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Course at glance

Discrete-time
signals and systems

/ \

[ Discrete-time signals ] [ Discrete-time systems
Fourier-domain Sampling and [ : /\Fllterdeﬂ | ]
representation reconstruction tructure 8

/\ [ Analysis ]

[ z-transform ] [ DFT/FFT ]
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FIR vs. lIR Filters
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Impulse response for rational system function

¢ Consider the system with only |5-order poles (assuming M>N)

M—-N N A
_ § : —r § : k
r=0 k=1
¢ Assuming the system to be causal

hln] = i: B,6[n—r]+ ) Adiuln]
r=0 k=1
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lIR vs. FIR systems

¢ H(z) may have (multiple) poles only at z=0 due to pole/zero cancellations

¢ If there is at least one nonzero pole of H(z) not cancelled by a zero
=>» The impulse response h[n] will have at least one Ay (dx)" u[n]
=> IIR system

¢ If H(z) has no poles except at z=0

Z brz~", hln Z by.S[n —

=> FIR system
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Simple FIR example

2 Consider FIR S)’Stelll

0, otherwise  z=a zero cancels pole
¢ System function M | M1, M
— n_ —m __
H(z)—z_:a,z = R

¢ Input-output relatio

M

yln] = Zakx[n — k] yn] — ayln — 1] = z[n] — a™an — M — 1]
k=0

=>» Two expressions represent identical systems
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Minimum-Phases Systems
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Minimum-phases systems

4 To have causal and stable systems
=» Poles must be inside the unit circle but no restriction on zeros

¢ To have causal and stable inverse
=» Zeros must be inside the unit circle as well

¢ If all poles and zeros are inside the unit circle
=>» Such systems are referred to as minimum-phases systems
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Minimum-phase and all-pass decomposition

¢ Any causal, stable rational function can be decomposed as

H(Z) = Hmin(Z)Hap(z)

Minimum-phase system  All-pass system el <1

¢ Proof: suppose H(z) has one zero outside the unit circle at z = 1/¢* and
remaining poles and zeros are inside the unit circle

_ . 2=
H(z) = I (2)(=" = ¢') = ()1 - e ) a5
Minimum-phase system !
Minimum-phase system All-pass system

¢ Possible to generalize to multiple zeros outside the unit circle
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Important property

® Let H(z) = Hupin(2)Hap(z)

¢ Frequency-response relationship
H(e™)| = |Hiin (e”),

for all w because
[Hop (7)) =1

for all w
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Frequency-response compensation

¢ Signals can be distorted by an LTI system with an undesirable frequency

response
+ Example: two-path communication channel > [
Q(t) — 5(t) o €j¢5(t o TO) \/‘-
\ J
|
Two-way multipath I _—
| N\
¢ Process the distorted signal with a compensating N /, N
systemi G ] bl \\ /Deep null |
l o8l \ /
: Distorting Compensating| | ool \\
——>» system = f—> system —{—» l \
sl | i [sl| e [ s | I A
| |
Lo e e o e e e e J
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Perfect compensation

G(z)
S |
: Distorting Compensating| |
— system —> system —{—»
sl | ) sl H | ] s
|
S J

¢ With perfect compensation s.[n| = s[n]
= H.(z) is the inverse of Hy(2)

€ We are interested in stable and causal distorting and compensating systems
=>» Perfect compensation is possible only if H;(z)is a minimum-phase system

¢ Not all distorting systems are minimum-phase systems
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Non-ideal compensation systems

¢ Decompose Hy(z) = Hdmin(z)HaQ
Minimum-phase system All-pass system

¢ Choose the compensating filter
1

Hy min(z)

H.(z) =

¢ Overall system becomes
G(2) = Hy(2)Holz) = Hup(2)
+ Frequency-response magnitude exactly compensated
+ Phase response modified to / H,,(e’*)
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Relation b/w magnitude and phase

o [H()P = H(*)H (") = H(2)H(1/2") |.oo

¢ Consider linear constant coefficient difference equation

H(z) = (bo) [T, (1 —Ck2‘1)7 e (i) _ (bo) [T, (1 —¢r2)

a0 H]k;V=1(1 —dgz™1) 7 a0 HkN=1(1 —dj;z)

H(z)H*(1/2") = (b_o) [ (I —exz™)(1 —ci2)

ao Hfj:l(l —drz1)(1 —d;z2)

¢ For same magnitude response, both ¢r and 1/c; are possible zeros
+ What about poles???
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Properties of minimum-phase system |

Im

Unit

circle

¢ For a system with M pairs of zeros
+ 2M possible causal & stable systems

\f

z-plane

Im

z-plane

%

with the same frequency-response
magnitude | H (e’%)|

+ Only one minimum-phase system exi
=>» All zeros inside unit circle

Hiin(2) = (1.25)%(1 — 0.9¢07271) (1 = 0.9¢ 7700771
x (1 —0.8¢ 79087271y (1 — 0.8¢787 27 1)

Unit
circle

Hy(z) = (1—0.9e/%"271)(1 — 0.9¢ 7067, 1)

Q

Q

1

4h.order | Re
pole

)
=

Tm
z-plane

4" order Re
pole

Tm
z-plane

/

; . 4'.order | Re
x (1 —1.25e7%87271)(1 — 1.25¢ 70875~ 1) & pole
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Frequency-response plots
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Minimum phase-lag property

¢ Define the negative of the phase as “phase-lag”

=» Larger the phase, smaller the phase-lag
Always negative in 0 < w <7

# Of all systems with the same |H (e/“)|, the system with alf poles and zeros
inside the unit circle has the minimum phase-lag functigh for 0 < w <7

arg[H ()] = arg[Hmin(€’“)] + arg[Hap (')

4 4

NI

| | |
0 T T 37 2 0
2

Radians
Rad
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| |
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Minimum group-delay property

¢ Clearly grd[H(e’)] = grd[Hmin(e’?)] + grd[Hap(e?*)]

Always positive in 0 <w <7

& Of all systems with the same |H (e/“)|, the system with all poles and zeros
inside the unit circle has the minimum group delay

15.0 15.0

75 1.9

Samples
{ =]
?
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Minimum energy-delay property

¢ All systems that have the same frequency-response magnitude has equal
energy

Sl = o [ 1) Pl = 5 [ a2 P = Y il
n=0 - n=0

¢ Define partial energy E[n] = Z |h[m

# Of all systems with the same | H(e’*)|, the system with all poles and zeros
inside the unit circle has the most energy concentrated around n=0

D hm]> < > [huin[m]?
m=0 m=0
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Minimum energy-delay property

hmin [n] ¢3.39 haln] ¢ 3.50 heln]
12.89 2.51 2.58
2.19
1.56
‘ I“-Sl ]].26 II'UU
2 1 0 1 2 3 4 5 6 n 2 -1 0 1 2 3 4 5 6 n
(a) (c)
h

¢339 h[n] 93.50 hd[”]

2.89

2.19 2.58 2.51
1.56
Iu.m ‘ I]_m l 1.26
: 4 : 0 1 : 4 :
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Linear phase systems

¢ For causal systems, zero phase is not possible

+ Some phase distortion must be allowed

4 [n many situations, it is desirable to design systems to have exactly or
approximately linear phase

¢ Ideal delay system example (Hiq(e??)] =1
Hid(ejw) = e—jwoz’ |w| <7 LHid(ejw) = —WQ

erd[Hiq(e’*)] = o
+ « does not have to be an integer (See 5.7.1)
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Generalized linear phase

¢ Generalized linear-phase system is defined as
H(e?¥) = A(e?¥)e 70w tiP

«, [ : real constants

A(e?%) : a real function of w

¢ Phase and group delay
arg[H ()] = B — wa

grd[H(e/*)] = a

POSTE2LCH
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Causal FIR generalized linear-phase systems

¢ Four classes of FIR systems with generalized linear-phase

+ Type | sy

+ Symmetric: 2[n] = h{M —n] i

* Meven I (Q)M”- o
+ Type ll R

* Symmetric: h[n] = h[M — 'n] ! o

e M odd l I ]E] IML
+ Type lll o

» Antisymmetric: h|n| = —h|M — n| 1y S

* Meven ; T
+ Type IV - .

* Antisymmetric: h[n] = —h[M — n] (| Centerof

+ M odd [T

rPOSTLE2PLCH 7 @ 23



Locations of zeros for FIR linear-phase systems

¢ For Types | and Il, channel impulse responses are symmetric h[n] = h|[M — n]

4 System function

M 0
H(z) =) h[M—n]z"" =) hlklz"2M =2""H(")
= =M
¢ If 20 islazeroofH( z),then H(z) = 25 ™M H(2;') =0
= 2y is also a zero

¢ If h[n] is real and 2 is a zero of H(z), then 2 is also a zero
> (z5) 'is also a zero
& H(z) will have factors of the form
(1—rzHA —r*27 A —r127H 1 - (rH* 2™

4+ What if zeros are on the unit circle?
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Locations of zeros for FIR linear-phase systems

& ForTypes lll and IV, h|n] = —h|[M — n]
# System function H(z) = —z M H(z™ 1)

& Ifz=1,H(1) = —H(1)=> z=1 is always a zero
@ Ifz=-1,H(—-1) = (=1)"M*TtH(-1)
=> If M is even, z=-1 should be a zero

4 These constraints are important in FIR linear-phase filter designs

+ Example: with (anti)symmetric impulse response, z = —1 (w = ) should be
always zero with M (even)odd

=>» For highpass filter with (anti)symmetric impulse response, M should be
(odd)even!
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Typical plots of zeros for Iinear—phase systems
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lIR filter and linear-phase

¢ So far, we discussed FIR linear-phase filters

¢ Can lIR filters have a linear-phase response!?

& Check with the same criterion
H(z)=42"MH(z)

+ If po is a pole of H(z),then1/pgis also a pole

+ If h[n] is real, then p; and 1/pj are also poles
=» Cannot be causal and stable!!!

POSTE2LCH
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Course at glance

Discrete-time
signals and systems

/ \

[ Discrete-time signals ] [ Discrete-time systems
Fourier-domain Sampling and [ : AdeSI | ]
representation reconstruction tructure 8

/\ [ Analysis ]

[ z-transform ] [ DFT/FFT ]
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Definition of filter

¢ Filter, in broader sense, covers any system

4+ Distortion environments are also filters

¢ We denote filters as controllable systems here
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Filter design process

¢ Three design steps

Performance
constraints System function .
Practical
Problem o o o filter
Specifications *| Approximations *| Realization [—
Magnitude response lIR vs. FIR Structure
Phase response Subtypes

Complexity

¢ Focus on lowpass filters

+ Can be generalized to other frequency-selective filters
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Example specifications

¢ Specifications for a discrete-time lowpass filter

1-001<|HE)|<14+001, 0<w<w,

(e |H(e?)| <0.001, w > w,
1+,

7N
N 5s = 0.001

Passband : Transition : Stopband
! A
| N\
| N

5 | | N
| M~
0 wp W T
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Specifications of frequency response

¢ Typical lowpass filter specifications in terms of tolerable
+ Passband distortion = as smallest as possible
+ Stopband attenuation = as greatest as possible
+ Width of transition band =» as narrowest as possible

¢ Improving one often worsens others =» tradeoff exists

@ Increasing filter order may improve all = increase complexity
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Design a filter

¢ Design goal
=>» Find system function to make frequency response meet the
specifications (tolerances)

¢ Infinite impulse response (lIR) filter
+ Poles insider unit circle due to causality and stability

+ Rational function approximation

¢ Finite impulse response (FIR) filter
+ For filters with linear phase requirement

+ Polynomial approximation
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Example of lIR filter design

¢ For rational (and stable and causal) system function

M _
H(Z) - Zkz(] bkz -
— ~ -
1—> 1 apz

find the system coefficients such that the corresponding frequency response
H(e™) = H(2) | =i
provides a good approximation to a desired response

H(ejw) ~ Hdesired(ejw)
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lIR vs. FIR

¢ Either FIR or lIR is often dependent on the phase requirements

¢ Only FIR filter can be at the same time stable, causal and GLP

¢ Design principle
+ If GLP is required = FIR
+ If not =>» IIR preferable because IIR can meet specifications with lower complexity
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lIR vs. FIR

¢ IR ¢ FIR
+ Rational system function + Polynomial system function
+ Poles and zeros + Only zeros
+ Stable/unstable + Always stable
+ Hard to control phase + Easy to get (generalized) linear
+ Low order (4-20) phase
+ Designed on the basis of analog + High order (20-200)
filter + Usually unrelated to analog filter

designs
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lIR Filter Design
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Discrete-time lIR filters from continuous-time filters

¢ Continuous-time (or analog) IR filter design is highly advanced

+ Relatively simple closed-form design possible

¢ Discrete-time |IR filter design
+ Filter specifications for discrete-time filter
+ Convert to continuous-time specifications
+ Design continuous-time filter

+ Convert to discrete-time filter
* Impulse invariance method

* Bilinear transformation method
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Analog filter designs

¢ Butterworth filter

¢ Type | Chebyshev filter
¢ Type ll Chebyshev filter
¢ Elliptic filter

POSTE2LCH
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Butterworth lowpass filter

1
1+ (€/Q.)2Y

& Filter form |H.(jQ)|* =
+ Two parameters

* Order N
* Cutoff frequency (2.

+ Monotonic in both passband and stopband

|H ()]

40
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Type | Chebyshev lowpass filter

1
. H.(jQ)? =
& Filter form H:(j)| 1+ e2V2(Q/Q.)

where Vi (z) = cos(N cos ' z)
+ Three parameters
* Order N
¢ Cutoff frequency (2.
* Allowable passband ripple €

& |H.(5Q)|? has equi-ripple error
in passband and monotonic in
stopband
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Type Il Chebyshev lowpass filter
1

. HC Q 2:
& Filter form ’ (J )| 1+[62VJ%(Q/QC)]_1

¢ Similar to Type | Chebyshev lowpass filter
+ |Hc(jﬂ)|2 now has equi-ripple error in stopband and flat in passband
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Elliptic filter

9 1
1+ eU(Q)

& Filter form |H.(j92)]

where Up (€2) is a Jacobian elliptic function

& |H.(jQ)|* has equi-ripples in
both passband and stopband
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Discrete-time IR filter design — impulse invariance

¢ Recall “discrete-time processing of continuous-time signals” in Section 4.4

x(1)

e e o o o — — — — — — — — — — — — — — — — — — — — — — — — — — —

H(jQ) = H.(jQ)

POSTE2LCH

Continuous-time
LTI system
h.(t), H.(jQ)

(a)

Discrete-time
LTI system
h{n], H(e')

(b)
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Output signal

4 Necessary conditions
+ The discrete-time system is LTl
+ Continuous-time signal Z.(t) is bandlimited
+ Sampling rate {2, is at or above the Nyquist rate 2{2

¢ If all conditions are satisfied, the output signal becomes

Y, (§Q) = Hem (702) X (5S2) Cutoff frequency of

. ideal lowpass filter
H(UT, Q] < W{ P
0, 2| > /T

where

Heff(jﬂ) — {

w = QT
rPoOsSTE2LCH 45



Impulse invariance

H(ejQT), Q2| < 7/T

& Recall Hog(7Q2) =
1) {o, Q) > n/T

¢ We want to have Heg(j2) = H.(j2)

» H(e5) = Ho(jw/T), |w| <

oy _ 1N (w _ 27k
@ In time-domain: hn| = Th.(nT) Xe) = Tk:Z_:OOXC (3 (T T ))
- 1 < 27k
e —13 3 (5 (3- %)
h=—oc Because H.(j?) =0, | > n/T
= H.(j=), ll<m
c JT ;

Only true when the filter is bandlimited
rPOSTEPLCH 46



Impulse invariance - aliasing

¢ If the analog filter is not bandlimited (typically the case in practice)
=>» Aliasing occurs in the discrete-time filter

+ Impulse invariance not appropriate for designing highpass filters

. W
H"'(] Td)
/\
w
H(e-f‘”)
—— =St~ =
o SN 7 RN d RN
o> \>/ \> \\
_e"// L.g’/ \\"-—-_z’/ \\--J \\--._
21 2T w
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How can we avoid the aliasing?

& Consider higher sampling frequency for analog filter 25 = 1/T
¢ Will this work? No!

+ Filter specifications given from discrete-time filter requirements

+ The specifications transformed to continuous-time by ) = w /7"

+ Continuous-time filter designed by continuous-time specifications

+ Final discrete-time filter obtained by impulse invariance method (sampling) «——

= £ (%)

k=—o0

=> Effect of 2, = 1/7T cancels out

¢ Aliasing can be avoided by overdesigning analog filter
rPOSTE2LCH 48



Interpretation using system functions

¢ Transformation from continuous-time system to discrete-time system is
easy to carry out using system functions

¢ After partial fraction expansion

N hin] = Tyh.(nTy)
Ak d d
Hc(S) = Z s — st / N
k=1 N — ZTdAkeskanu[n]
Zk:l AkGSkta t 2 0 k=1
hC(t) —
0, t<0 N
— ZTdAk(eSde)”u[n]
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Interpretation using system functions

¢ Mapping from H.(s) to H(z)
+ Pole of H.(s)at s = 55, maps to pole of H(z) at z = ¢
=> Stability and causality preserved
+ Continuous-time: Re{s;} < 0
+ Discrete-time: z = e**?4 inside the unit circle

Selg
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Impulse invariance with Butterworth filter

# Specifications: 0.89125 < |H(e’*)] <1, 0<|w| <0.27
|H(e?*)] <0.17783, 037 < |w| <7

¢ Since the effect 2, = 1/T cancels out,set T=1 and w = ()

¢ Transformed analog specifications
0.89125 < [H.(jQ)] <1, 0<[Q] <0.27
H.(72)] <0.17783, 03n < (2| <

4 Due to monotonicity of Butterworth filter
|H.(70.27)| > 0.89125

|H.(j0.3m)| < 017783

51
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Impulse invariance with Butterworth filter

¢ The magnitude-squared function of Butterworth filter

o 1
H.(jQ)|" = 1-|—(Q/Qc)2N

¢ From the specifications | H.(j0.27)| > 0.89125, |H.(50.37)| < 017783

L (02 A T L (037 A T
Q. -~ \0.89125 ) Q. N\ 0.17783

+ Simultaneous solutions are N<5.8858, Q. =0.70474

Should be integer
¢ Let N =6and ), = 0.7032 to exactly meet the passband specifications

+ Stopband specification exceeded =» margin for aliasing
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Impulse invariance with Butterworth filter

¢ Rewrite the magnitude-squared function

H.(s)H.(—s) = !

1+ (s/7Q)2N m
( / C) \\*"‘6 "‘*‘*// s-plane
+ The system function has |2 poles .
: \ /
¢ To have a stable filter, H.(s) should have XX
. . R | B
three pole pairs in the left half of s-plane /x’ R
\ |/
& \|/ o ;<
. |
: I Re
\
i
X X
\x“ _—_xz

POSTE2LCH
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Impulse invariance with Butterworth filter

¢ With three pole pairs

0.12093
bl (8) =

(s* +0.36405 +0.4945)(s> + 0.99455 + 0.4945)(s> +1.3585s + 0.4945)

¢ After partial fraction use the transformation
N

T4A
Zs—sk »H Z1—49‘?’6:’1]12,2_1

k=1 k=1

& Final discrete-time filter
0.2871 — 0.44662~! —2.1428 4+ 1.14552 1
1 —1.29712—1 + 0.69492 2 T 1.06912—1 4+ 0.36992 2
1.8557 — 0.6303z 1

i 1 —0.99722—1 + 0.25702 2
POSTE2LCH 54
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Impulse invariance with Butterworth filter
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Discrete-time lIR filter design - bilinear transformation

¢ Continuous-time (analog) filter designed using s-plane (Laplace transform)

S:O-+]Q Z:rrne_jw
H.(s) = / h(t)e*tdt H(z) = S hlnle
H.(5) :/ h(t)e_jmdt eaw Z hn]e—jwn

¢ Mapping between s-plane and z-plane
2 (1—=2 2 (1—z1
= H(z
7 () b ae-u(z (55))
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Rational behind bilinear transformation

oo

¢ Recall H.(s) :/ h(t)e *'dt and H(z) = Z hin|z™"

=

T: numerical integration step size of the trapezoidal rule

N

|

Q)
o
~

N,

s % IH(ZV Series based on area hyperbolic tangent function
S 20z—1 1 /z—1\" 1/z-1)"
T z+1+§(2+1) +5(z+1) o
_2z—-1
T Tz+1
21—z71
T T1+4z1

o7
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Bilinear transformation - concept

¢ Given s =0 + 382

- 1‘|‘(Td/2)8 _ 1‘|‘O’Td/2—|—jQTd/2
1= (Ty/2)s  1—0Ty/2— jQTy/2
+1f 0 <0, |z| <1 for any Q2
+1f 0 >0, |z| >1 for any ()

Z

s-plane z-plane

Im

. - Image of
¢ Given s = jf) s = j) (unit circle)

14 5QTy/2 /\<
A
1—3QT,/2
J d/ o KJ Re
-> |Z|=| for any s Image of

left half-plane
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Bilinear transformation - frequency relationship

2
¢ Q= T tan(w/2), w = 2arctan(Q27,/2)

w
w = 2 arctan (%)

» Frequency warping
POSTE2LCH 59



Bilinear transformation

ST
I
.'
¢ No problem of aliasing compared to ,'
. . . I
impulse invariance method kel
. . = = |
+ Good for highpass filter design fls o |
[ el
Il Il l\
- c‘? \\
¢ There exists the nonlinear compression \
. /
of the frequency axis I P
2 :_"_’____cf-___ _—
+ Suitable for piecewise-constant = T\T |
S \
\

magnitude response filters

|
i
+ Linear phase analog filters may lose | i
|
|
|

-

[H(e™)|
. . ‘
linear phase property after transformation 8
\
I\
I\
\
L8 oy
L 1IN L
0 w, © T [0
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Effect on phase response

H(el®)
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Impulse invariance vs. bilinear transformation

& Bilinear transformation
+ No aliasing effect

+ Not good for preserving phase response

¢ Impulse invariance
+ Aliasing happens due to sampling

+ Possible to preserve linear phase of analog filter

* Suitable to differentiator that requires linear phase
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Bilinear transformation with Butterworth filter

# Specifications: 0.89125 < |H(e’*)] <1, 0<|w| <0.27
|H(e?*)] <0.17783, 037 < |w| <7

¢ Transformed analog specifications

2 0.2
0.89125 < [Hc(j8)| =1, 0= [Q] < —tan ( QW)
d

2 0.3
[H(j€)] < 0.17783, ?tan (TW) < Q| <0
d

4 Due to monotonicity of Butterworth filter
|H.(j2tan(0.17))| > 0.89125, |H.(j2tan(0.157))| < 017783
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Bilinear transformation with Butterworth filter

¢ Using similar approach as in impulse invariance method, we get N=5.305

¢ Let N =6, (). = 0.766, which now satisfies the stopband specification
|H.(j2tan(0.157))| < 017783

¢ This is reasonable for bilinear transformation due to lack of aliasing
+ Possible to have the desired stopband edge

¢ Derive stable system function H.(s)and apply bilinear transformation

2 [(1—2z1
S =
Ty \ 1+ 271
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Impulse invariance vs. bilin
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Frequency transformation of lowpass IR filter

¢ So far, we have focused on lowpass IIR filter

¢ How can we implement general bandpass (multiband) filters?

|+ | (il Uil

1 -0, L L
5, |- NN

| I I I I

W, Wy W W) ™
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Possible approaches

¢ Transform from analog multiband filter
+ Acceptable only with bilinear transformation

+ Impulse invariance suffers from aliasing
=» Hard to implement highpass (or multiband) filters

¢ Transform from discrete-time lowpass filter

+ Works for both impulse invariance and bilinear transformation

POSTE2LCH
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Z-plane of prototype Fiere

TRANSFORMATIONS FROM A LOWPASS DIGITAL FILTER PROTOTYPE

Transformation table

TABLE 7.1
OF CUTOFF FREQUENCY #p TO HIGHPASS, BANDPASS, AND BANDSTOP FILTERS

Transformations

Associated Design Formulas

F Ho—
sin (_}Lzﬂ)

lowpass filter
z7' =
1 —az—!

Lowpass

z-plane of Highpass z7 =
€ 1 +az-!

desired filter

. kI
Bandpass Z7' = k=1 _-2 2ak -1 +1
k1t E+1°
~2_ e -1y 1=k
Bandstop 7= HE o
1=k.—>  Ja -1 4
1+k° 1+k°
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S1
wp = desired cutoff frequency

#,
o= — -
B —
cus( p)“’ﬂ

wp = desired cutoff frequency
@p3+@n
cos (Pﬂ_p)
=
o —
cos (_1”2_)_-”])
Op

(i3] — &
k = cot (u) tan (T

o=
in (Hp—:mp)

wp) = desired lower cutoff frequency
wpy = desired upper cutoff frequency

@+
cos (_PZTL])
"= [} '?:k)
cos (_._-E'Tf’_l.)
Fp

e O —wp1
k= tan (—7—) tan (?)

wpy = desired 10\;’91' cutoff frequency
wpy = desired upper cutoff frequency
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lIR filter with linear phase

¢ IR filters generally have nonlinear phases

¢ Possible to have linear phase IIR filters for non real-time applications

x[n] ——— IR h[n] — z|n]

z|—n] - IR h[n] —— w(n)]

yln| = w|=n]
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Frequency-domain analysis

® Z(e7¥) = H(¥)X (V)
W(e™) = H(e’*)Z" ()
= H(e!Y)H* (%) X" (%)
= |H(e!)[* X" ()
@ Since y[n] = w[—n)|

Y(e?%) = W*(e H(e?)* X (e7%)

/

Real number =» no phase distortion at all!
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Matlab example

% Linear phase IIR filter example from Mathworks.com
fs = 100;

t =0:1/fs:1;

X = sin(2*pi*t*3)+.25*sin (2*pi*t*40);

b = ones(1,10)/10;

y = filtfilt(b,1,x);

yy = filter(b,1,x);
plot(t,x,t,y,'--'",t,yy,":")

Noncausal filtering
Normal filtering

o° o o°
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