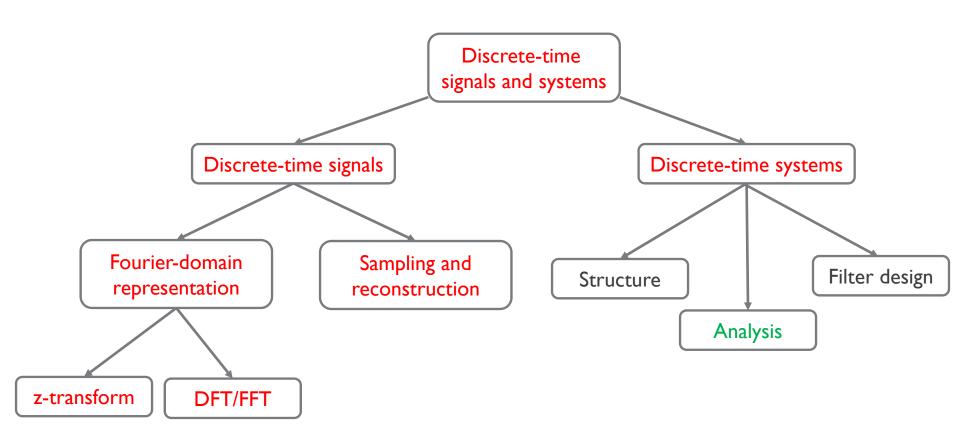


Digital Signal Processing

POSTECH

Department of Electrical Engineering Junil Choi

Course at glance



FIR vs. IIR Filters

Impulse response for rational system function

 \bullet Consider the system with only I st-order poles (assuming M>N)

$$H(z) = \sum_{r=0}^{M-N} B_r z^{-r} + \sum_{k=1}^{N} \frac{A_k}{1 - d_k z^{-1}}$$

Assuming the system to be causal

$$h[n] = \sum_{r=0}^{M-N} B_r \delta[n-r] + \sum_{k=1}^{N} A_k d_k^n u[n]$$

IIR vs. FIR systems

- lacktriangledown H(z) may have (multiple) poles only at z=0 due to pole/zero cancellations
- lacktriangle If there is at least one nonzero pole of H(z) not cancelled by a zero
 - \rightarrow The impulse response h[n] will have at least one $A_k(d_k)^n u[n]$
 - → IIR system
- If H(z) has no poles except at z=0

$$H(z) = \sum_{k=0}^{M} b_k z^{-k}, \ h[n] = \sum_{k=0}^{M} b_k \delta[n-k]$$

→ FIR system

Simple FIR example

Consider FIR system

$$h[n] = \begin{cases} a^n, & 0 \le n \le M \\ 0, & \text{otherwise} \quad \text{z=a zero cancels pole} \end{cases}$$

System function

n
$$H(z) = \sum_{m=0}^{M} a^{m} z^{-n} = \frac{1 - a^{M+1} z^{-M-1}}{1 - a z^{-1}}$$

Input-output relation
$$y[n] = \sum_{k=0}^{M} a^k x[n-k] \qquad y[n] - ay[n-1] = x[n] - a^{M+1}x[n-M-1]$$

Two expressions represent identical systems

Minimum-Phases Systems

Minimum-phases systems

- ◆ To have causal and stable systems
 - → Poles must be inside the unit circle but no restriction on zeros
- ◆ To have causal and stable inverse
 - → Zeros must be inside the unit circle as well
- If all poles and zeros are inside the unit circle
 - → Such systems are referred to as minimum-phases systems

Minimum-phase and all-pass decomposition

Any causal, stable rational function can be decomposed as

$$H(z)=H_{\min}(z)H_{\mathrm{ap}(z)}$$
 Minimum-phase system All-pass system
$$|c|<1$$

 • Proof: suppose $H(z)$ has one zero outside the unit circle at $z=1/c^*$ and

remaining poles and zeros are inside the unit circle

Possible to generalize to multiple zeros outside the unit circle

Important property

- Let $H(z) = H_{\min}(z)H_{\operatorname{ap}(z)}$
- Frequency-response relationship

$$|H(e^{j\omega})| = |H_{\min}(e^{j\omega})|$$

for all ω because

$$|H_{\rm ap}(e^{j\omega})|=1$$

for all ω

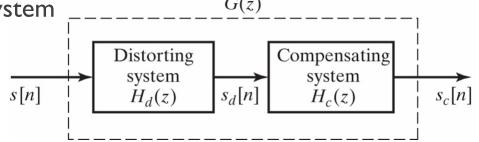
Frequency-response compensation

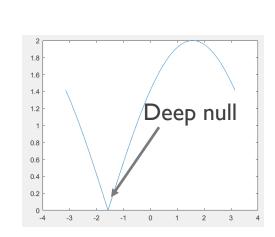
 Signals can be distorted by an LTI system with an undesirable frequency response

★ Example: two-path communication channel

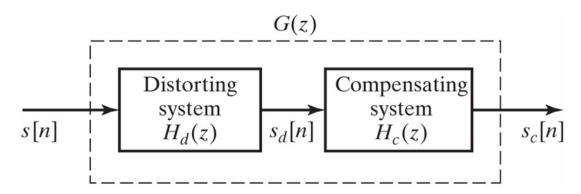
$$q(t) = \delta(t) - e^{j\phi}\delta(t - T_0)$$
 Two-way multipath

• Process the distorted signal with a compensating system G(z)





Perfect compensation



- lacktriangle With perfect compensation $s_c[n] = s[n]$
 - \rightarrow $H_c(z)$ is the inverse of $H_d(z)$
- We are interested in stable and causal distorting and compensating systems
 - igoplus Perfect compensation is possible only if $H_d(z)$ is a minimum-phase system
- Not all distorting systems are minimum-phase systems

Non-ideal compensation systems

lacktriangle Decompose $H_d(z) = H_{d \min}(z) H_{\mathrm{ap}}(z)$ Minimum-phase system All-pass system

Choose the compensating filter

$$H_c(z) = \frac{1}{H_{d\min}(z)}$$

Overall system becomes

$$G(z) = H_d(z)H_c(z) = H_{\rm ap}(z)$$

- → Frequency-response magnitude exactly compensated
- igspace Phase response modified to $\angle H_{\rm ap}(e^{j\omega})$

Relation b/w magnitude and phase

•
$$|H(e^{j\omega})|^2 = H(e^{j\omega})H^*(e^{j\omega}) = H(z)H^*(1/z^*)|_{z=e^{j\omega}}$$

Consider linear constant coefficient difference equation

$$H(z) = \left(\frac{b_0}{a_0}\right) \frac{\prod_{k=1}^{M} (1 - c_k z^{-1})}{\prod_{k=1}^{N} (1 - d_k z^{-1})}, \quad H^*\left(\frac{1}{z^*}\right) = \left(\frac{b_0}{a_0}\right) \frac{\prod_{k=1}^{M} (1 - c_k^* z)}{\prod_{k=1}^{N} (1 - d_k^* z)}$$

$$H(z)H^*(1/z^*) = \left(\frac{b_0}{a_0}\right)^2 \frac{\prod_{k=1}^M (1 - c_k z^{-1})(1 - c_k^* z)}{\prod_{k=1}^N (1 - d_k z^{-1})(1 - d_k^* z)}$$

- lacktriangle For same magnitude response, both $\,c_k\,$ and $\,1/c_k^*\,$ are possible zeros
 - → What about poles???

z-plane

z-plane

Im

pole

Im

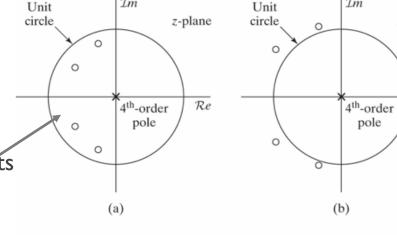
0

Unit

circle

Properties of minimum-phase system I

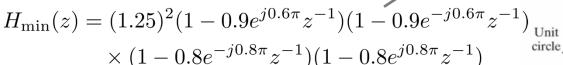
- For a system with M pairs of zeros
 - \star 2^M possible causal & stable systems with the same frequency-response magnitude $|H(e^{j\omega})|$
 - → Only one minimum-phase system exists
 - → All zeros inside unit circle



z-plane

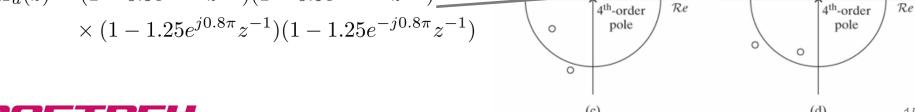
Im

circle

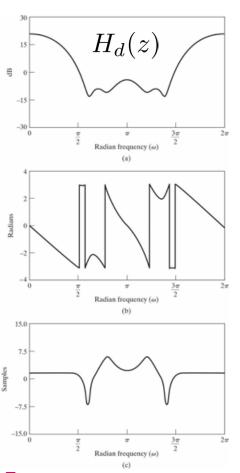


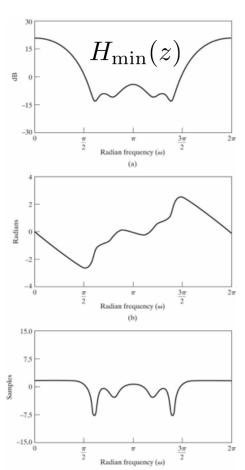
$$H_d(z) = (1 - 0.9e^{j0.6\pi}z^{-1})(1 - 0.9e^{-j0.6\pi}z^{-1})$$

$$imes (1-0.3e^{-j})(1-0.3e^{-j}) \times (1-1.25e^{j0.8\pi}z^{-1})(1-1.25e^{-j0.8\pi}z^{-1})$$



Frequency-response plots





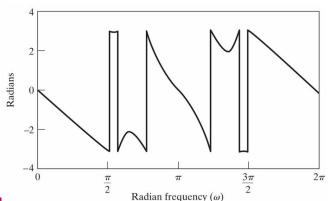
Minimum phase-lag property

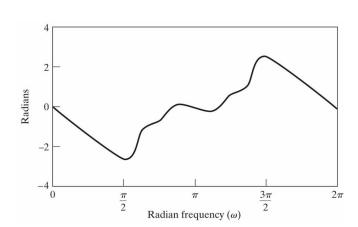
- ◆ Define the negative of the phase as "phase-lag"
 - → Larger the phase, smaller the phase-lag

Always negative in $0 \le \omega \le \pi$

• Of all systems with the same $|H(e^{j\omega})|$, the system with all poles and zeros inside the unit circle has the minimum phase-lag function for $0 \le \omega \le \pi$

$$\arg[H(e^{j\omega})] = \arg[H_{\min}(e^{j\omega})] + \arg[H_{ap}(e^{j\omega})]$$

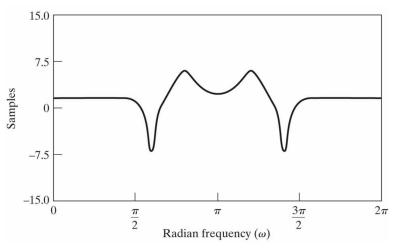


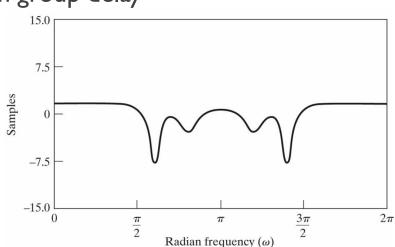


Minimum group-delay property

• Clearly $\gcd[H(e^{j\omega})]=\gcd[H_{\min}(e^{j\omega})]+\gcd[H_{\mathrm{ap}}(e^{j\omega})]$ Always positive in $0\leq\omega\leq\pi$

• Of all systems with the same $|H(e^{j\omega})|$, the system with all poles and zeros inside the unit circle has the minimum group delay





Minimum energy-delay property

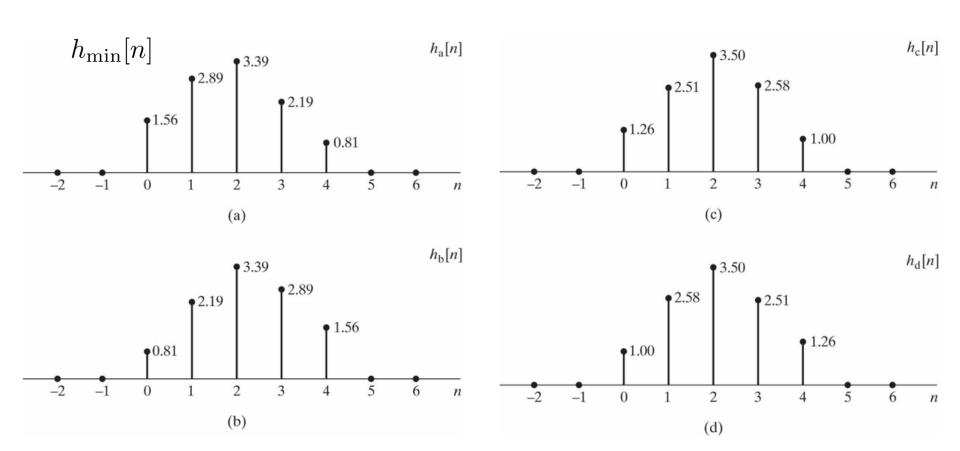
 All systems that have the same frequency-response magnitude has equal energy

$$\sum_{n=0}^{\infty} |h[n]|^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} |H(e^{j\omega})|^2 d\omega = \frac{1}{2\pi} \int_{-\pi}^{\pi} |H_{\min}(e^{j\omega})|^2 d\omega = \sum_{n=0}^{\infty} |h_{\min}[n]|^2$$

- Define partial energy $E[n] = \sum_{m=0}^{n} |h[m]|^2$
- Of all systems with the same $|H(e^{j\omega})|$, the system with all poles and zeros inside the unit circle has the most energy concentrated around n=0

$$\sum_{m=0}^{n} |h[m]|^2 \le \sum_{m=0}^{n} |h_{\min}[m]|^2$$

Minimum energy-delay property



Linear phase systems

- ◆ For causal systems, zero phase is not possible
 - → Some phase distortion must be allowed
- In many situations, it is desirable to design systems to have exactly or approximately linear phase
- ◆ Ideal delay system example

$$H_{\rm id}(e^{j\omega}) = e^{-j\omega\alpha}, \ |\omega| < \pi$$

$$|H_{\rm id}(e^{j\omega})|=1$$

$$\angle H_{\rm id}(e^{j\omega}) = -\omega\alpha$$

$$\operatorname{grd}[H_{\operatorname{id}}(e^{j\omega})] = \alpha$$

 \star α does not have to be an integer (See 5.7.1)

Generalized linear phase

Generalized linear-phase system is defined as

$$H(e^{j\omega}) = A(e^{j\omega})e^{-j\alpha\omega + j\beta}$$

 α, β : real constants

 $A(e^{j\omega})$: a real function of ω

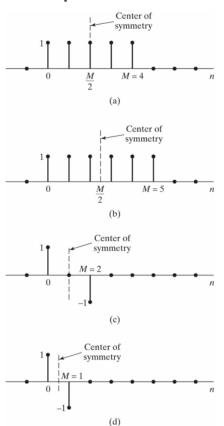
Phase and group delay

$$\arg[H(e^{j\omega})] = \beta - \omega \alpha$$

$$\operatorname{grd}[H(e^{j\omega})] = \alpha$$

Causal FIR generalized linear-phase systems

- Four classes of FIR systems with generalized linear-phase
 - → Type I
 - Symmetric: h[n] = h[M-n]
 - M even
 - ◆ Type II
 - Symmetric: h[n] = h[M-n]
 - M odd
 - → Type III
 - Antisymmetric: h[n] = -h[M-n]
 - M even
 - ★ Type IV
 - Antisymmetric: h[n] = -h[M-n]
 - M odd



Locations of zeros for FIR linear-phase systems

- For Types I and II, channel impulse responses are symmetric h[n] = h[M-n]
- System function

$$H(z) = \sum_{n=0}^{M} h[M-n]z^{-n} = \sum_{k=M}^{0} h[k]z^{k}z^{-M} = z^{-M}H(z^{-1})$$

- ♦ If z_0 is a zero of H(z), then $H(z_0) = z_0^{-M} H(z_0^{-1}) = 0$ $\rightarrow z_0^{-1}$ is also a zero
- ♦ If h[n] is real and z_0 is a zero of H(z), then z_0^* is also a zero $\rightarrow (z_0^*)^{-1}$ is also a zero
- lacktriangledown H(z) will have factors of the form

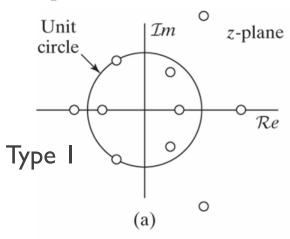
$$(1-rz^{-1})(1-r^*z^{-1})(1-r^{-1}z^{-1})(1-(r^{-1})^*z^{-1})$$

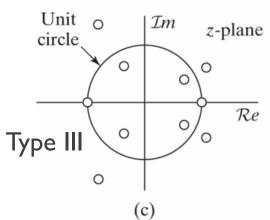
→ What if zeros are on the unit circle?

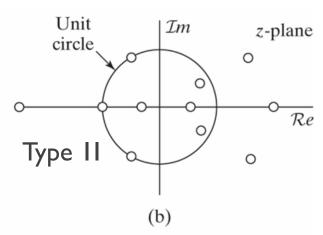
Locations of zeros for FIR linear-phase systems

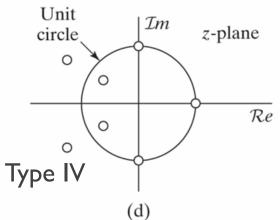
- For Types III and IV, h[n] = -h[M-n]
- System function $H(z) = -z^{-M}H(z^{-1})$
- If z=1, H(1)=-H(1) \Rightarrow z=1 is always a zero
- If z=-1, $H(-1)=(-1)^{-M+1}H(-1)$
 - \rightarrow If M is even, z=-1 should be a zero
- ◆ These constraints are important in FIR linear-phase filter designs
 - + Example: with (anti)symmetric impulse response, z=-1 ($\omega=\pi$) should be always zero with M (even)odd
 - → For highpass filter with (anti)symmetric impulse response, M should be (odd)even!

Typical plots of zeros for linear-phase systems









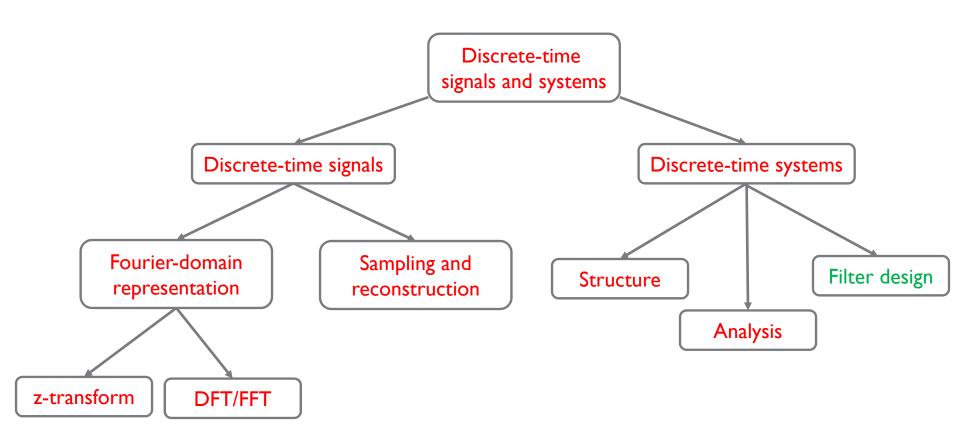
IIR filter and linear-phase

- So far, we discussed FIR linear-phase filters
- ◆ Can IIR filters have a linear-phase response?
- Check with the same criterion

$$H(z) = \pm z^{-M} H(z^{-1})$$

- \bullet If p_0 is a pole of H(z), then $1/p_0$ is also a pole
- + If h[n] is real, then p_0^* and $1/p_0^*$ are also poles
- → Cannot be causal and stable!!!

Course at glance

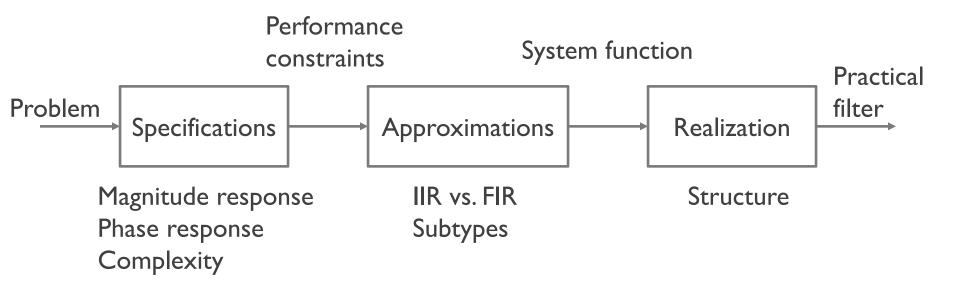


Definition of filter

- ◆ Filter, in broader sense, covers any system
 - → Distortion environments are also filters
- We denote filters as controllable systems here

Filter design process

◆ Three design steps

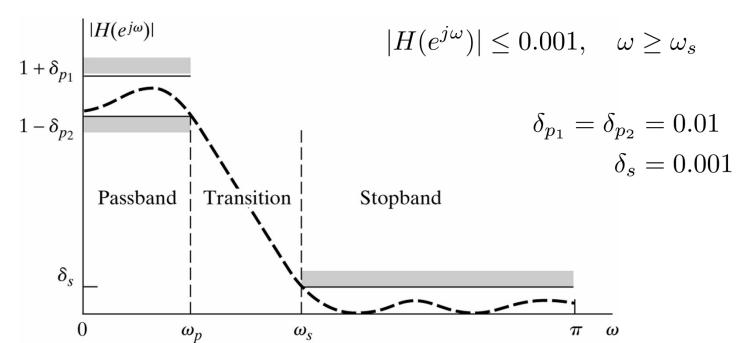


- Focus on lowpass filters
 - → Can be generalized to other frequency-selective filters

Example specifications

Specifications for a discrete-time lowpass filter

$$1 - 0.01 \le |H(e^{j\omega})| \le 1 + 0.01, \quad 0 \le \omega \le \omega_p$$



Specifications of frequency response

- ◆ Typical lowpass filter specifications in terms of tolerable
 - → Passband distortion → as smallest as possible
 - → Stopband attenuation → as greatest as possible
 - → Width of transition band → as narrowest as possible
- ◆ Improving one often worsens others → tradeoff exists
- ◆ Increasing filter order may improve all → increase complexity

Design a filter

- Design goal
 - → Find system function to make frequency response meet the specifications (tolerances)
- Infinite impulse response (IIR) filter
 - → Poles insider unit circle due to causality and stability
 - → Rational function approximation
- Finite impulse response (FIR) filter
 - → For filters with linear phase requirement
 - → Polynomial approximation

Example of IIR filter design

For rational (and stable and causal) system function

$$H(z) = \frac{\sum_{k=0}^{M} b_k z^{-k}}{1 - \sum_{k=1}^{N} a_k z^{-k}}$$

find the system coefficients such that the corresponding frequency response

$$H(e^{j\omega}) = H(z) \mid_{z=e^{j\omega}}$$

provides a good approximation to a desired response

$$H(e^{j\omega}) \approx H_{\text{desired}}(e^{j\omega})$$

IIR vs. FIR

- ◆ Either FIR or IIR is often dependent on the phase requirements
- Only FIR filter can be at the same time stable, causal and GLP
- Design principle
 - → If GLP is required → FIR.
 - → If not → IIR preferable because IIR can meet specifications with lower complexity.

IIR vs. FIR

- ◆ IIR
 - → Rational system function
 - → Poles and zeros
 - → Stable/unstable
 - → Hard to control phase
 - **→** Low order (4-20)
 - Designed on the basis of analog filter

◆ FIR

- → Polynomial system function
- → Only zeros
- → Always stable
- Easy to get (generalized) linear phase
- → High order (20-200)
- Usually unrelated to analog filter designs

IIR Filter Design

Discrete-time IIR filters from continuous-time filters

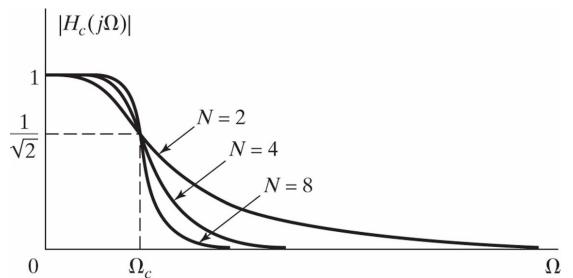
- Continuous-time (or analog) IIR filter design is highly advanced
 - → Relatively simple closed-form design possible
- Discrete-time IIR filter design
 - → Filter specifications for discrete-time filter
 - → Convert to continuous-time specifications
 - → Design continuous-time filter
 - → Convert to discrete-time filter
 - Impulse invariance method
 - Bilinear transformation method

Analog filter designs

- Butterworth filter
- ◆ Type I Chebyshev filter
- ◆ Type II Chebyshev filter
- Elliptic filter

Butterworth lowpass filter

- Filter form $|H_c(j\Omega)|^2 = \frac{1}{1 + (\Omega/\Omega_c)^{2N}}$
 - → Two parameters
 - Order N
 - Cutoff frequency Ω_c
 - → Monotonic in both passband and stopband

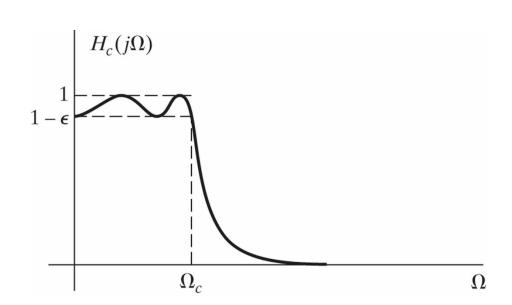


Type I Chebyshev lowpass filter

• Filter form $|H_c(j\Omega)|^2 = \frac{1}{1 + \epsilon^2 V_N^2(\Omega/\Omega_c)}$

where
$$V_N(x) = \cos(N\cos^{-1}x)$$

- → Three parameters
 - Order N
 - Cutoff frequency Ω_c
 - Allowable passband ripple ϵ
- $|H_c(j\Omega)|^2$ has equi-ripple error in passband and monotonic in stopband



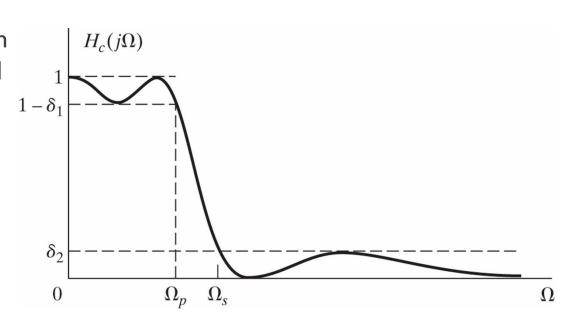
Type II Chebyshev lowpass filter

• Filter form
$$|H_c(j\Omega)|^2 = \frac{1}{1 + [\epsilon^2 V_N^2(\Omega/\Omega_c)]^{-1}}$$

- Similar to Type I Chebyshev lowpass filter
 - $+ |H_c(j\Omega)|^2$ now has equi-ripple error in stopband and flat in passband

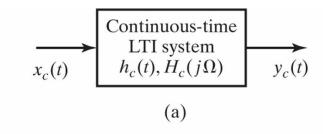
Elliptic filter

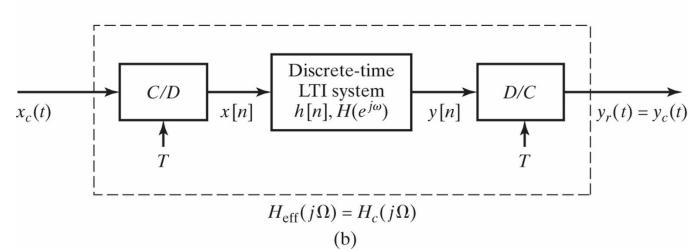
- Filter form $|H_c(j\Omega)|^2=\frac{1}{1+\epsilon^2U_N^2(\Omega)}$ where $U_N(\Omega)$ is a Jacobian elliptic function
- $|H_c(j\Omega)|^2$ has equi-ripples in both passband and stopband



Discrete-time IIR filter design - impulse invariance

Recall "discrete-time processing of continuous-time signals" in Section 4.4





Output signal

- Necessary conditions
 - → The discrete-time system is LTI
 - igspace Continuous-time signal $x_c(t)$ is bandlimited
 - lacktriangle Sampling rate Ω_s is at or above the Nyquist rate $2\Omega_N$
- If all conditions are satisfied, the output signal becomes

$$Y_r(j\Omega)=H_{\rm eff}(j\Omega)X_c(j\Omega) \qquad \text{Cutoff frequency of ideal lowpass filter}$$
 where
$$H_{\rm eff}(j\Omega)=\begin{cases} H(e^{j\Omega T}), & |\Omega|<\pi/T\\ 0, & |\Omega|\geq\pi/T \end{cases}$$

Impulse invariance

• Recall
$$H_{\mathrm{eff}}(j\Omega) = \begin{cases} H(e^{j\Omega T}), & |\Omega| < \pi/T \\ 0, & |\Omega| \ge \pi/T \end{cases}$$

• We want to have $H_{\rm eff}(j\Omega) = H_c(j\Omega)$

$$H(e^{j\omega}) = H_c(j\omega/T), \quad |\omega| < \pi$$

• In time-domain: $h[n] = Th_c(nT)$

$$X(e^{j\omega}) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X_c \left(j \left(\frac{\omega}{T} - \frac{2\pi k}{T} \right) \right)$$

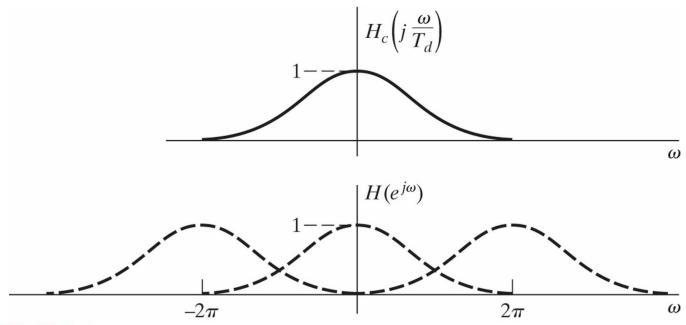
Because
$$H_c(j\Omega) = 0, \quad |\Omega| \ge \pi/T$$

 $H(e^{j\omega}) = T \frac{1}{T} \sum_{k=-\infty}^{\infty} H_c \left(j \left(\frac{\omega}{T} - \frac{2\pi k}{T} \right) \right)$ $= H_c \left(j \frac{\omega}{T} \right), \quad |\omega| < \pi$

Only true when the filter is bandlimited

Impulse invariance - aliasing

- ◆ If the analog filter is not bandlimited (typically the case in practice)
 - → Aliasing occurs in the discrete-time filter
 - → Impulse invariance not appropriate for designing highpass filters



How can we avoid the aliasing?

- lacktriangle Consider higher sampling frequency for analog filter $\Omega_s=1/T$
- Will this work? No!
 - → Filter specifications given from discrete-time filter requirements
 - lacktriangledown The specifications transformed to continuous-time by $\Omega=\omega/T$
 - → Continuous-time filter designed by continuous-time specifications
 - + Final discrete-time filter obtained by impulse invariance method (sampling) <

$$H(e^{j\omega}) = \sum_{k=-\infty}^{\infty} H_c \left(j \left(\frac{\omega}{T} - \frac{2\pi k}{T} \right) \right)$$

- \rightarrow Effect of $\Omega_s = 1/T$ cancels out
- Aliasing can be avoided by overdesigning analog filter

Interpretation using system functions

- ◆ Transformation from continuous-time system to discrete-time system is easy to carry out using system functions
- ◆ After partial fraction expansion

$$H_c(s) = \sum_{k=1}^{N} \frac{A_k}{s - s_k}$$

$$h_c(t) = \begin{cases} \sum_{k=1}^{N} A_k e^{s_k t}, & t \ge 0\\ 0, & t < 0 \end{cases}$$

$$h[n] = T_d h_c(nT_d)$$

$$= \sum_{k=1}^{N} T_d A_k e^{s_k nT_d} u[n]$$

$$= \sum_{k=1}^{N} T_d A_k (e^{s_k T_d})^n u[n]$$

$$\stackrel{\mathcal{Z}}{\longleftrightarrow} H(z) = \sum_{k=1}^{N} \frac{T_d A_k}{1 - e^{s_k T_d} z^{-1}}$$

Interpretation using system functions

- lacktriangle Mapping from $H_c(s)$ to H(z)
 - → Pole of $H_c(s)$ at $s=s_k$ maps to pole of H(z) at $z=e^{s_kT_d}$ → Stability and causality preserved
 - ullet Continuous-time: $\operatorname{Re}\{s_k\} < 0$
 - igspace Discrete-time: $z=e^{s_kT_d}$ inside the unit circle

- Specifications: $0.89125 \le |H(e^{j\omega})| \le 1$, $0 \le |\omega| \le 0.2\pi$ $|H(e^{j\omega})| \le 0.17783$, $0.3\pi \le |\omega| \le \pi$
- lacktriangle Since the effect $\Omega_s=1/T$ cancels out, set T=1 and $\omega=\Omega$
- Transformed analog specifications

$$0.89125 \le |H_c(j\Omega)| \le 1, \quad 0 \le |\Omega| \le 0.2\pi$$

 $|H_c(j\Omega)| \le 0.17783, \quad 0.3\pi \le |\Omega| \le \pi$

Due to monotonicity of Butterworth filter

$$|H_c(j0.2\pi)| \ge 0.89125$$

◆ The magnitude-squared function of Butterworth filter

$$|H_c(j\Omega)|^2 = \frac{1}{1 + (\Omega/\Omega_c)^{2N}}$$

• From the specifications $|H_c(j0.2\pi)| \ge 0.89125, |H_c(j0.3\pi)| \le 0.017783$

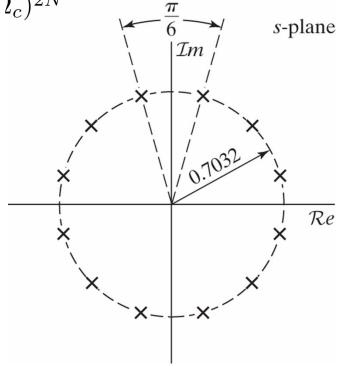
$$1 + \left(\frac{0.2\pi}{\Omega_c}\right)^{2N} = \left(\frac{1}{0.89125}\right)^2, \quad 1 + \left(\frac{0.3\pi}{\Omega_c}\right)^{2N} = \left(\frac{1}{0.17783}\right)^2$$

- + Simultaneous solutions are $N=5.8858,~\Omega_c=0.70474$ Should be integer
- lacktriangle Let N=6 and $\Omega_c=0.7032$ to exactly meet the passband specifications
 - → Stopband specification exceeded → margin for aliasing

Rewrite the magnitude-squared function

$$H_c(s)H_c(-s) = \frac{1}{1 + (s/j\Omega_c)^{2N}}$$

- → The system function has 12 poles
- To have a stable filter, $H_c(s)$ should have three pole pairs in the left half of s-plane



♦ With three pole pairs

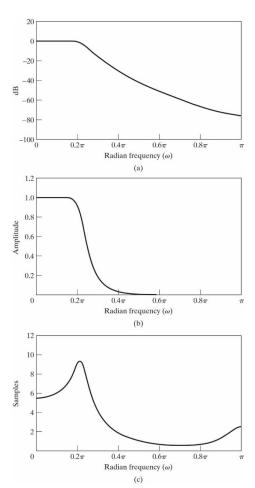
$$H_c(s) = \frac{0.12093}{(s^2 + 0.3640s + 0.4945)(s^2 + 0.9945s + 0.4945)(s^2 + 1.3585s + 0.4945)}$$

◆ After partial fraction, use the transformation

$$H_c(s) = \sum_{k=1}^{N} \frac{A_k}{s - s_k} \longrightarrow H(z) = \sum_{k=1}^{N} \frac{T_d A_k}{1 - e^{s_k T_d} z^{-1}}$$

◆ Final discrete-time filter

$$H(z) = \frac{0.2871 - 0.4466z^{-1}}{1 - 1.2971z^{-1} + 0.6949z^{-2}} + \frac{-2.1428 + 1.1455z^{-1}}{1 - 1.0691z^{-1} + 0.3699z^{-2}} + \frac{1.8557 - 0.6303z^{-1}}{1 - 0.9972z^{-1} + 0.2570z^{-2}}$$



Discrete-time IIR filter design - bilinear transformation

◆ Continuous-time (analog) filter designed using s-plane (Laplace transform)

$$s = \sigma + j\Omega$$

$$z = re^{-j\omega}$$

$$H_c(s) = \int_{-\infty}^{\infty} h(t)e^{-st}dt$$

$$H(z) = \sum_{n = -\infty}^{\infty} h[n]z^{-n}$$

$$H_c(j\Omega) = \int_{-\infty}^{\infty} h(t)e^{-j\Omega t}dt$$

$$H(e^{j\omega}) = \sum_{n = -\infty}^{\infty} h[n]e^{-j\omega n}$$

Mapping between s-plane and z-plane

$$s = \frac{2}{T_d} \left(\frac{1 - z^{-1}}{1 + z^{-1}} \right) \longrightarrow H(z) = H_c \left(\frac{2}{T_d} \left(\frac{1 - z^{-1}}{1 + z^{-1}} \right) \right)$$

Rational behind bilinear transformation

• Recall $H_c(s) = \int_{-\infty}^{\infty} h(t)e^{-st}dt$ and $H(z) = \sum_{n=-\infty}^{\infty} h[n]z^{-n}$

$$z = e^{sT}$$

$$T: \text{ numerical integration step size of the trapezoidal rule}$$

$$s = \frac{1}{T} \ln(z)$$
Series based on area hyperbolic tangent function
$$= \frac{2}{T} \left[\frac{z-1}{z+1} + \frac{1}{3} \left(\frac{z-1}{z+1} \right)^3 + \frac{1}{5} \left(\frac{z-1}{z+1} \right)^5 + \cdots \right]$$

$$\approx \frac{2}{T} \frac{z-1}{z+1}$$

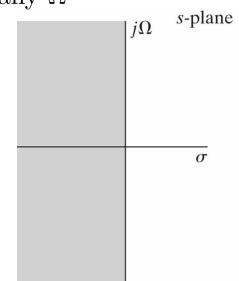
$$= \frac{2}{T} \frac{1-z^{-1}}{z-1}$$

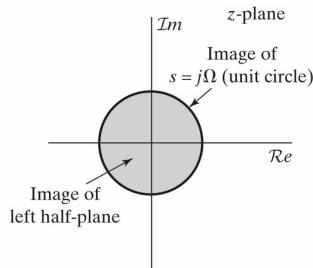
Bilinear transformation - concept

• Given $s = \sigma + j\Omega$

$$z = \frac{1 + (T_d/2)s}{1 - (T_d/2)s} = \frac{1 + \sigma T_d/2 + j\Omega T_d/2}{1 - \sigma T_d/2 - j\Omega T_d/2}$$

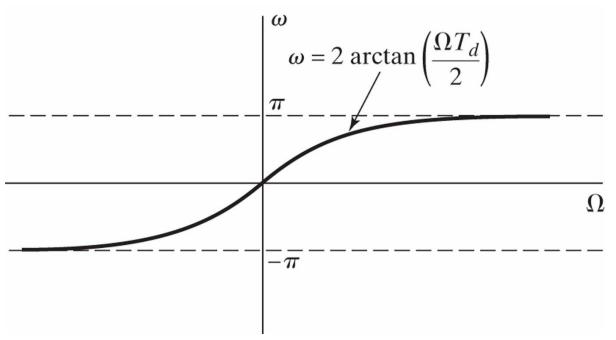
- \bullet If $\sigma < 0$, |z| < 1 for any Ω
- \bullet If $\sigma > 0$, |z| > 1 for any Ω
- Given $s=j\Omega$ $z=\frac{1+j\Omega T_d/2}{1-j\Omega T_d/2}$
 - \rightarrow |z|=1 for any s





Bilinear transformation – frequency relationship

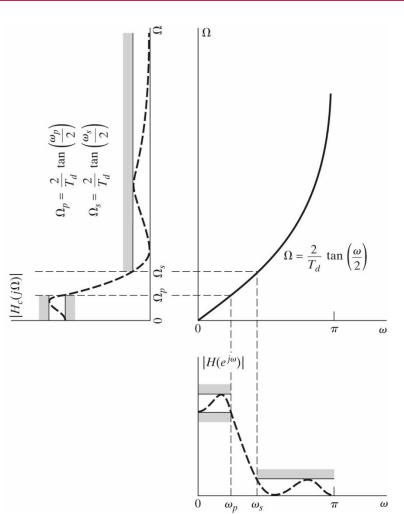
•
$$\Omega = \frac{2}{T_d} \tan(\omega/2), \quad \omega = 2 \arctan(\Omega T_d/2)$$



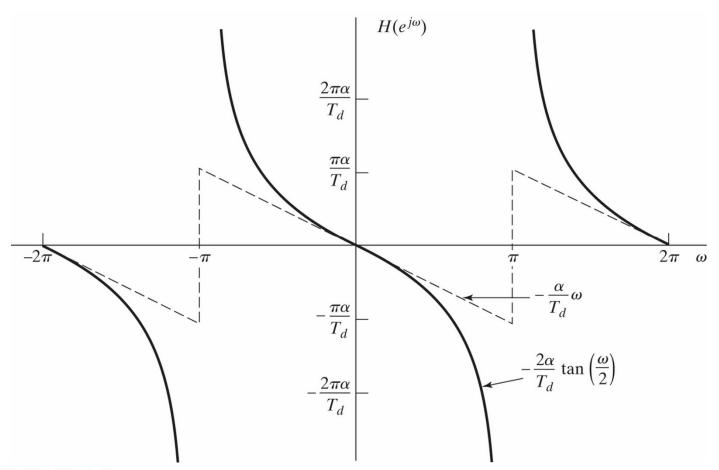
Frequency warping

Bilinear transformation

- No problem of aliasing compared to impulse invariance method
 - → Good for highpass filter design
- ◆ There exists the nonlinear compression of the frequency axis
 - → Suitable for piecewise-constant magnitude response filters
 - Linear phase analog filters may lose linear phase property after transformation



Effect on phase response



Impulse invariance vs. bilinear transformation

- Bilinear transformation
 - → No aliasing effect
 - → Not good for preserving phase response
- Impulse invariance
 - Aliasing happens due to sampling
 - → Possible to preserve linear phase of analog filter
 - Suitable to differentiator that requires linear phase

Bilinear transformation with Butterworth filter

• Specifications:
$$0.89125 \leq |H(e^{j\omega})| \leq 1, \quad 0 \leq |\omega| \leq 0.2\pi$$

$$|H(e^{j\omega})| \leq 0.17783, \quad 0.3\pi \leq |\omega| \leq \pi$$

Transformed analog specifications

$$0.89125 \le |H_c(j\Omega)| \le 1, \quad 0 \le |\Omega| \le \frac{2}{T_d} \tan\left(\frac{0.2\pi}{2}\right)$$
$$|H_c(j\Omega)| \le 0.17783, \quad \frac{2}{T_d} \tan\left(\frac{0.3\pi}{2}\right) \le |\Omega| \le \infty$$

Due to monotonicity of Butterworth filter

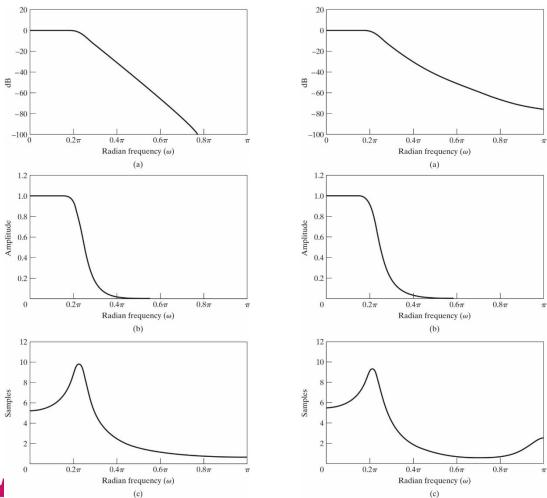
$$|H_c(j2\tan(0.1\pi))| \ge 0.89125, |H_c(j2\tan(0.15\pi))| \le 0.017783$$

Bilinear transformation with Butterworth filter

- \bullet Using similar approach as in impulse invariance method, we get N=5.305
- Let $N=6,~\Omega_c=0.766$, which now satisfies the stopband specification $|H_c(j2\tan(0.15\pi))| \leq 017783$
- This is reasonable for bilinear transformation due to lack of aliasing
 Possible to have the desired stopband edge
- lacktriangle Derive stable system function $H_c(s)$ and apply bilinear transformation

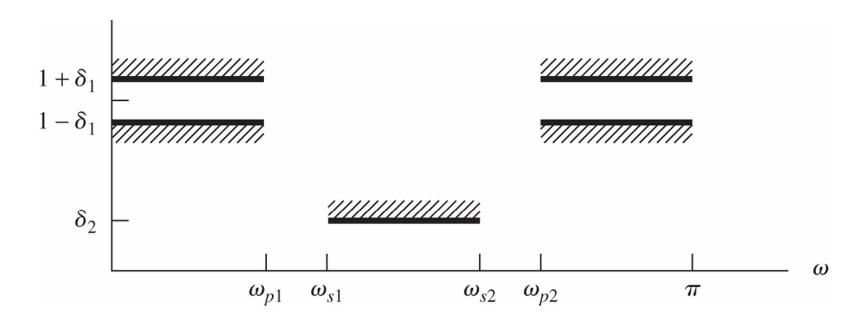
$$s = \frac{2}{T_d} \left(\frac{1 - z^{-1}}{1 + z^{-1}} \right)$$

Impulse invariance vs. bilinear transformation



Frequency transformation of lowpass IIR filter

- So far, we have focused on lowpass IIR filter
- How can we implement general bandpass (multiband) filters?



Possible approaches

- ◆ Transform from analog multiband filter
 - ★ Acceptable only with bilinear transformation
 - → Impulse invariance suffers from aliasing
 - → Hard to implement highpass (or multiband) filters
- Transform from discrete-time lowpass filter
 - → Works for both impulse invariance and bilinear transformation

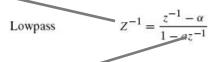
Transformation table

TRANSFORMATIONS FROM A LOWPASS DIGITAL FILTER PROTOTYPE OF CUTOFF FREQUENCY θ_D TO HIGHPASS, BANDPASS, AND BANDSTOP FILTERS

Transformations

Associated Design Formulas

lowpass filter



z-plane of desired filter

$$Z^{-1} = -\frac{z^{-1} + \alpha}{1 + \alpha z^{-1}}$$

$$Z^{-1} = -\frac{z^{-1} + \alpha}{1 + \alpha z^{-1}}$$

Bandpass
$$Z^{-1} = -\frac{z^{-2} - \frac{2\alpha k}{k+1} z^{-1} + \frac{k-1}{k+1}}{\frac{k-1}{k+1} z^{-2} - \frac{2\alpha k}{k+1} z^{-1} + 1}$$

$$k = \cot\left(\frac{\omega_{p2} - \omega_{p1}}{2}\right) \tan\left(\frac{\theta_{p}}{2}\right)$$

$$Z^{-1} = \frac{z^{-2} - \frac{2\alpha}{1+k}z^{-1} + \frac{1-k}{1+k}}{\frac{1-k}{2}z^{-2} - \frac{2\alpha}{2}z^{-1} + 1}$$

$$\alpha = \frac{\sin\left(\frac{\theta_p - \omega_p}{2}\right)}{\sin\left(\frac{\theta_p + \omega_p}{2}\right)}$$

 ω_p = desired cutoff frequency

$$\alpha = -\frac{\cos\left(\frac{\theta_p + \omega_p}{2}\right)}{\cos\left(\frac{\theta_p - \omega_p}{2}\right)}$$

 ω_p = desired cutoff frequency

$$\alpha = \frac{\cos\left(\frac{\omega_{p2} + \omega_{p1}}{2}\right)}{\cos\left(\frac{\omega_{p2} - \omega_{p1}}{2}\right)}$$

$$\left(\frac{\omega_{p2} - \omega_{p1}}{2}\right)$$

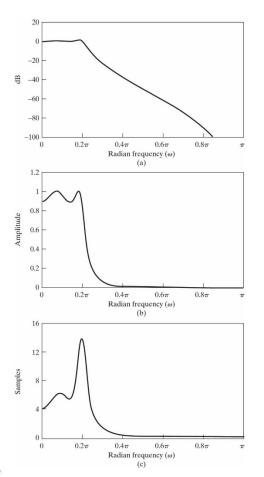
$$k = \cot\left(\frac{\omega_{p2} - \omega_{p1}}{2}\right) \tan\left(\frac{\theta_p}{2}\right)$$

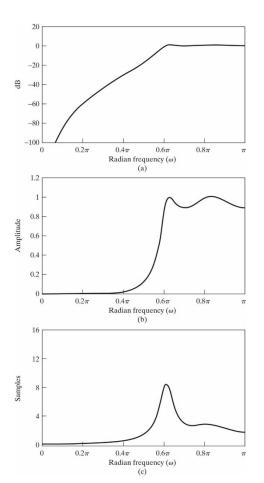
 ω_{n1} = desired lower cutoff frequency ω_{p2} = desired upper cutoff frequency

$$Z^{-1} = \frac{z^{-2} - \frac{2\alpha}{1+k}z^{-1} + \frac{1-k}{1+k}}{\frac{1-k}{1+k}z^{-2} - \frac{2\alpha}{1+k}z^{-1} + 1} \qquad \qquad k = \tan\left(\frac{\omega_{p2} - \omega_{p1}}{2}\right) \tan\left(\frac{\theta_{p}}{2}\right)$$

 ω_{n1} = desired lower cutoff frequency ω_{p2} = desired upper cutoff frequency

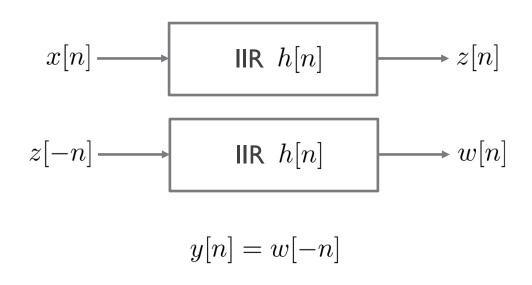
Lowpass to highpass filter transformation





IIR filter with linear phase

- ◆ IIR filters generally have nonlinear phases
- ◆ Possible to have linear phase IIR filters for non real-time applications



Frequency-domain analysis

$$Z(e^{j\omega}) = H(e^{j\omega})X(e^{j\omega})$$

$$W(e^{j\omega}) = H(e^{j\omega})Z^*(e^{j\omega})$$

$$= H(e^{j\omega})H^*(e^{j\omega})X^*(e^{j\omega})$$

$$= |H(e^{j\omega})|^2 X^*(e^{j\omega})$$

• Since y[n] = w[-n]

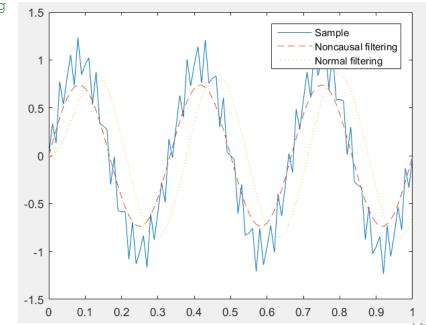
$$Y(e^{j\omega}) = W^*(e^{j\omega}) = |H(e^{j\omega})|^2 X(e^{j\omega})$$

Real number → no phase distortion at all!

Matlab example

```
% Linear phase IIR filter example from Mathworks.com
fs = 100;
t = 0:1/fs:1;
x = \sin(2*pi*t*3) + .25*\sin(2*pi*t*40);
b = ones(1,10)/10;
                             % 10 point averaging filter
v = filtfilt(b,1,x); % Noncausal filtering
```

- % Normal filtering



yy = filter(b, 1, x);

plot(t,x,t,y,'--',t,yy,':')