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FIR vs. IIR Filters
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Impulse response for rational system function

 Consider the system with only 1st-order poles (assuming M>N)

 Assuming the system to be causal
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IIR vs. FIR systems

 may have (multiple) poles only at z=0 due to pole/zero cancellations

 If there is at least one nonzero pole of           not cancelled by a zero
The impulse response        will have at least one
 IIR system

 If           has no poles except at z=0

 FIR system
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Simple FIR example

 Consider FIR system

 System function

 Input-output relation

Two expressions represent identical systems
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z=a zero cancels pole 



Minimum-Phases Systems
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Minimum-phases systems

 To have causal and stable systems 
 Poles must be inside the unit circle but no restriction on zeros

 To have causal and stable inverse
 Zeros must be inside the unit circle as well

 If all poles and zeros are inside the unit circle
 Such systems are referred to as minimum-phases systems
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Minimum-phase and all-pass decomposition

 Any causal, stable rational function can be decomposed as

 Proof: suppose         has one zero outside the unit circle at                and 
remaining poles and zeros are inside the unit circle

 Possible to generalize to multiple zeros outside the unit circle
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Minimum-phase system All-pass system
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Important property

 Let

 Frequency-response relationship

for all      because

for all
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Frequency-response compensation

 Signals can be distorted by an LTI system with an undesirable frequency 
response
 Example: two-path communication channel

 Process the distorted signal with a compensating
system
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Two-way multipath

Deep null



Perfect compensation

 With perfect compensation
 is the inverse of

 We are interested in stable and causal distorting and compensating systems
 Perfect compensation is possible only if           is a minimum-phase system

 Not all distorting systems are minimum-phase systems 
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Non-ideal compensation systems

 Decompose

 Choose the compensating filter

 Overall system becomes

 Frequency-response magnitude exactly compensated
 Phase response modified to  
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Minimum-phase system All-pass system



Relation b/w magnitude and phase



 Consider linear constant coefficient difference equation

 For same magnitude response, both       and          are possible zeros
 What about poles???
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Properties of minimum-phase system 1

 For a system with M pairs of zeros
 possible causal & stable systems

with the same frequency-response 
magnitude

 Only one minimum-phase system exists
All zeros inside unit circle
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Frequency-response plots
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Minimum phase-lag property

 Define the negative of the phase as “phase-lag”
 Larger the phase, smaller the phase-lag

 Of all systems with the same              , the system with all poles and zeros 
inside the unit circle has the minimum phase-lag function for
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Always negative in 



Minimum group-delay property

 Clearly

 Of all systems with the same              , the system with all poles and zeros 
inside the unit circle has the minimum group delay
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Always positive in 



Minimum energy-delay property

 All systems that have the same frequency-response magnitude has equal 
energy

 Define partial energy

 Of all systems with the same              , the system with all poles and zeros 
inside the unit circle has the most energy concentrated around n=0
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Minimum energy-delay property
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Linear phase systems

 For causal systems, zero phase is not possible
 Some phase distortion must be allowed

 In many situations, it is desirable to design systems to have exactly or 
approximately linear phase

 Ideal delay system example

 does not have to be an integer (See 5.7.1)
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Generalized linear phase

 Generalized linear-phase system is defined as

 Phase and group delay
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Causal FIR generalized linear-phase systems

 Four classes of FIR systems with generalized linear-phase
 Type I

• Symmetric:
• M even 

 Type II
• Symmetric:
• M odd 

 Type III
• Antisymmetric:
• M even 

 Type IV
• Antisymmetric:
• M odd 
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Locations of zeros for FIR linear-phase systems

 For Types I and II, channel impulse responses are symmetric
 System function

 If      is a zero of         , then
 is also a zero

 If h[n] is real and     is a zero of         , then      is also a zero
 is also a zero 

 will have factors of the form

 What if zeros are on the unit circle?
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Locations of zeros for FIR linear-phase systems

 For Types III and IV, 
 System function

 If z=1,                          z=1 is always a zero
 If z=-1,
 If M is even, z=-1 should be a zero

 These constraints are important in FIR linear-phase filter designs
 Example: with (anti)symmetric impulse response,                              should be 

always zero with M (even)odd 
 For highpass filter with (anti)symmetric impulse response, M should be 
(odd)even!
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Typical plots of zeros for linear-phase systems
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IIR filter and linear-phase

 So far, we discussed FIR linear-phase filters
 Can IIR filters have a linear-phase response?

 Check with the same criterion

 If       is a pole of          , then         is also a pole
 If h[n] is real, then       and          are also poles

 Cannot be causal and stable!!!
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Definition of filter

 Filter, in broader sense, covers any system
 Distortion environments are also filters

 We denote filters as controllable systems here
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Filter design process

 Three design steps

 Focus on lowpass filters
 Can be generalized to other frequency-selective filters 
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Example specifications

 Specifications for a discrete-time lowpass filter
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Specifications of frequency response

 Typical lowpass filter specifications in terms of tolerable
 Passband distortion  as smallest as possible
 Stopband attenuation  as greatest as possible
 Width of transition band  as narrowest as possible

 Improving one often worsens others  tradeoff exists

 Increasing filter order may improve all  increase complexity
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Design a filter

 Design goal
 Find system function to make frequency response meet the 
specifications (tolerances)

 Infinite impulse response (IIR) filter
 Poles insider unit circle due to causality and stability
 Rational function approximation

 Finite impulse response (FIR) filter
 For filters with linear phase requirement
 Polynomial approximation
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Example of IIR filter design

 For rational (and stable and causal) system function

find the system coefficients such that the corresponding frequency response

provides a good approximation to a desired response
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IIR vs. FIR

 Either FIR or IIR is often dependent on the phase requirements

 Only FIR filter can be at the same time stable, causal and GLP

 Design principle
 If GLP is required  FIR
 If not  IIR preferable because IIR can meet specifications with lower complexity
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IIR vs. FIR

 IIR
 Rational system function
 Poles and zeros
 Stable/unstable
 Hard to control phase
 Low order (4-20)
 Designed on the basis of analog 

filter

 FIR
 Polynomial system function
 Only zeros
 Always stable
 Easy to get (generalized) linear 

phase
 High order (20-200)
 Usually unrelated to analog filter 

designs
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IIR Filter Design
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Discrete-time IIR filters from continuous-time filters

 Continuous-time (or analog) IIR filter design is highly advanced
 Relatively simple closed-form design possible

 Discrete-time IIR filter design
 Filter specifications for discrete-time filter
 Convert to continuous-time specifications
 Design continuous-time filter
 Convert to discrete-time filter

• Impulse invariance method
• Bilinear transformation method

38



Analog filter designs

 Butterworth filter
 Type I Chebyshev filter
 Type II Chebyshev filter
 Elliptic filter
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Butterworth lowpass filter

 Filter form
 Two parameters

• Order N
• Cutoff frequency 

 Monotonic in both passband and stopband
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Type I Chebyshev lowpass filter

 Filter form

where
 Three parameters

• Order N
• Cutoff frequency 
• Allowable passband ripple

 has equi-ripple error 
in passband and monotonic in 
stopband
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Type II Chebyshev lowpass filter

 Filter form

 Similar to Type I Chebyshev lowpass filter
 now has equi-ripple error in stopband and flat in passband
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Elliptic filter

 Filter form

where             is a Jacobian elliptic function

 has equi-ripples in
both passband and stopband
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Discrete-time IIR filter design – impulse invariance

 Recall “discrete-time processing of continuous-time signals” in Section 4.4
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Output signal

 Necessary conditions
 The discrete-time system is LTI
 Continuous-time signal          is bandlimited
 Sampling rate       is at or above the Nyquist rate

 If all conditions are satisfied, the output signal becomes 

where 
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Cutoff frequency of 
ideal lowpass filter



Impulse invariance

 Recall

 We want to have 

 In time-domain:
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Only true when the filter is bandlimited



Impulse invariance - aliasing

 If the analog filter is not bandlimited (typically the case in practice)
Aliasing occurs in the discrete-time filter
 Impulse invariance not appropriate for designing highpass filters
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How can we avoid the aliasing?

 Consider higher sampling frequency for analog filter
 Will this work? No!

 Filter specifications given from discrete-time filter requirements
 The specifications transformed to continuous-time by
 Continuous-time filter designed by continuous-time specifications
 Final discrete-time filter obtained by impulse invariance method (sampling)

 Effect of                   cancels out

 Aliasing can be avoided by overdesigning analog filter
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Interpretation using system functions

 Transformation from continuous-time system to discrete-time system is 
easy to carry out using system functions

 After partial fraction expansion
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Interpretation using system functions

 Mapping from           to
 Pole of            at              maps to pole of           at
Stability and causality preserved

 Continuous-time:
 Discrete-time:                  inside the unit circle  
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Impulse invariance with Butterworth filter

 Specifications:

 Since the effect                  cancels out, set T=1 and

 Transformed analog specifications 

 Due to monotonicity of Butterworth filter 
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Impulse invariance with Butterworth filter

 The magnitude-squared function of Butterworth filter

 From the specifications

 Simultaneous solutions are

 Let            and                      to exactly meet the passband specifications
 Stopband specification exceeded  margin for aliasing
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Should be integer



Impulse invariance with Butterworth filter

 Rewrite the magnitude-squared function

 The system function has 12 poles

 To have a stable filter,            should have 
three pole pairs in the left half of s-plane
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Impulse invariance with Butterworth filter

 With three pole pairs

 After partial fraction, use the transformation

 Final discrete-time filter
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Impulse invariance with Butterworth filter
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Discrete-time IIR filter design – bilinear transformation

 Continuous-time (analog) filter designed using s-plane (Laplace transform)

 Mapping between s-plane and z-plane
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Rational behind bilinear transformation

 Recall                                         and
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T: numerical integration step size of the trapezoidal rule

Series based on area hyperbolic tangent function



Bilinear transformation - concept

 Given

 If
 If

 Given

 |z|=1 for any s
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Bilinear transformation – frequency relationship


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Frequency warping



Bilinear transformation

 No problem of aliasing compared to 
impulse invariance method
 Good for highpass filter design

 There exists the nonlinear compression 
of the frequency axis
 Suitable for piecewise-constant 

magnitude response filters
 Linear phase analog filters may lose 

linear phase property after transformation
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Effect on phase response
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Impulse invariance vs. bilinear transformation

 Bilinear transformation
 No aliasing effect
 Not good for preserving phase response

 Impulse invariance
 Aliasing happens due to sampling
 Possible to preserve linear phase of analog filter

• Suitable to differentiator that requires linear phase
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Bilinear transformation with Butterworth filter

 Specifications:

 Transformed analog specifications 

 Due to monotonicity of Butterworth filter 
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Bilinear transformation with Butterworth filter

 Using similar approach as in impulse invariance method, we get N=5.305

 Let                               , which now satisfies the stopband specification

 This is reasonable for bilinear transformation due to lack of aliasing
 Possible to have the desired stopband edge

 Derive stable system function           and apply bilinear transformation
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Impulse invariance vs. bilinear transformation
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Frequency transformation of lowpass IIR filter

 So far, we have focused on lowpass IIR filter
 How can we implement general bandpass (multiband) filters?
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Possible approaches

 Transform from analog multiband filter
 Acceptable only with bilinear transformation
 Impulse invariance suffers from aliasing
 Hard to implement highpass (or multiband) filters

 Transform from discrete-time lowpass filter
 Works for both impulse invariance and bilinear transformation
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Transformation table
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Z-plane of prototype 
lowpass filter

z-plane of 
desired filter



Lowpass to highpass filter transformation
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IIR filter with linear phase

 IIR filters generally have nonlinear phases
 Possible to have linear phase IIR filters for non real-time applications
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IIR

IIR



Frequency-domain analysis



 Since 
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Real number  no phase distortion at all!



Matlab example
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% Linear phase IIR filter example from Mathworks.com
fs = 100;
t = 0:1/fs:1;
x = sin(2*pi*t*3)+.25*sin(2*pi*t*40);

b = ones(1,10)/10;             % 10 point averaging filter
y = filtfilt(b,1,x);           % Noncausal filtering
yy = filter(b,1,x);            % Normal filtering
plot(t,x,t,y,'--',t,yy,':')


