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Course at glance

Discrete-time
signals and systems

/ \

[ Discrete-time signals ] [ Discrete-time systems
Fourier-domain Sampling and [ : /\Fllterdeﬂ | ]
representation reconstruction tructure 8

/\ [ Analysis ]

[ z-transform ] [ DFT/FFT ]
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Structures for Discrete-Time
Systems
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System implementation

¢ Consider LTI system with rational function

¢ Impulse response
h[n] = boa™u[n] + bra™ tuln — 1]

¢ Linear constant-coefficient difference equation (with initial rest)

y[n] — ay[n — 1] = boz[n] + byx[n — 1]

¢ They are three equivalent representations

¢ How to implement this system!?
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Block Diagram Representation
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System implementation concept

¢ Hard to implement the system using impulse response
h[n] = boa™u[n] + bra™ tun — 1]
Infinite duration
¢ Linear constant-coefficient difference equation
y[n] — ay[n — 1] = boz[n] + byx[n — 1]

y[n] = ay[n — 1] + boz[n| + brx[n — 1]
provides the basis for an algorithm for recursive computation of the
output at any time n
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Basic elements for implementation

¢ Consider y[n] = ay[n — 1] 4+ boz[n| + bix[n — 1]

¢ It needs
+ Adders
+ Multipliers
+ Unit delays
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Block diagram example

¢ Consider y[n| = a1y[n — 1] + azy[n — 2| + bpz|n|

4 The system can be implemented as

by

x|n]
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General higher-order difference equations

N M
¢ Consider y[n] = Z aryln — k] + Z brz[n — k
k=1 k=0

J
| . fc\io bkz_k

v[n| H(z) = 1 Z;cvzl s

T
y[n]

] » A cascade of two LTI systems
[n-1] x[n]=>v[n], v[n]=>y[n]

M
vin| = Z bpx[n — k
k=0

N
yln] =Y aryln — k] + v[n]
I v L5 L | ym-N k=1



Rearrangement of block diagram

¢ Since convolution is commutative, the order of two LTI systems can be
reversed while having the same output
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Minimum delay implementation

¢ The minimum number of delay elements: max(N, M)

win]
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Direct forms | and Il

¢ Direct form | ¢ Direct form |l (canonic form)
+ Direct realization of difference + With minimum number of delays
equatlon /_?\ - wn] by Q
il N | N ]
x[n] z!
=~ a by 7
. O———0
4 i \
71
x[n=2] :
Wik -1 e
D0
-1
x[n-M] |—b>M— —af—l y[n-N] )
ay by
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Example

, 1+ 2271
¢ Consider H(z) = 151 109,2

y[n] = 1.5y[n — 1] — 0.9y[n — 2] + z[n] + 2z[n — 1]

b x[n] v yln]

x[n] ]
21 | -
2

> 15 /)
y >

1 Y

Z—l

~0.9
=gt
Direct form | Direct form Il
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Signal Flow Graph Representation
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Signal flow graph

¢ Essentially the same as block diagram representation
+ Exist a few notational differences

+ Represent a network with nodes and branches

Node k
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Example of signal flow graph

d

a
Source s /E\ e Sink
M0de xln] wiln]\_c_Awaln]  y[n] "O9€

¢ Note wiq[n] = z[n| + awsz[n] + bwsz[n]
we[n] = cwi[n]

y[n] = dxln] + ews[n]
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Block vs. signal flow graph representation

w(n] {3_()
\ y[n]
z’]
a I bl
< >
(a)

Source Sink
node 0 1 y: by 3 node 5
O > O > O > O . O
x[n] y[n]

branch

(b)
¢ Nodes in signal flow graph represent both branching points and adders

¢ In the block diagram a special symbol is used for adders and a node has
only one incoming branch.
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Actual signal flow graph representation

'w1:
’lU2-
ws|

’LU4:

Y

wﬂn] wzﬁ[n] by W3 ,[n]
o yln]
n| = awy[n] + x[n]
= [n] = aws[n — 1] + z[n]
n] = bowa[n] + biwy[n w2|n] = awz(n — xn
n - “?2 [Z[_] 1] o yln] = bowz[n] + bywa|n — 1]
n| = ws[n|

POSTECH
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Signal flow graph with z-transformation

¢ Consider the graph
+ Not a direct form

+ Cannot obtain H(z) by inspection

+ How to obtain H(z)?

¢ Each node is w;
w2
w3
Wy

Yl

S 3333
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x[n]

= wy[n| — z[n]

= aw1 [n]

Oo—>—

-1 wiln] o waln]

Difficult to solve due to delay
Use z-transform!
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Signal flow graph with z-transformation

# z-transform equations Wy(z) = Wy(z) — X (2)
Wa(z) = aWi(2)
Ws(z) = Wa(z) + X(2)
Wa(z) = 27 ' W3(2)
Y (2) = Wa(z) + Wy(z)

¢ After removing some variables

Wa(2) = alWi(z) - X(2) W) = 2D x(a)
Wa(z) = 27 (Wa(2) + X (2)) z-l_(f - Q)
Y (2) = Wa(z) + Wu(2) Wile) = ———"X(2)
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Signal flow graph with z-transformation

¢ Output becomes Y (2) = ( ) X (z)

\All-pass system with real o
¢ System function and corresponding impulse response

H(z):< :

Z T —

1— az—l) , hln] = a"Tuln —1] — " uln]

¢ Comparing two representations: requires different computational resources

-1 wiln] o waln]
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Basic structure for lIR systems

¢ Similar to block-diagram representation, there can be various ways to
represent a system using signal flow graph

+ Direct form |
+ Direct form Il (canonic direct form)
+ Cascade form

4+ Parallel form
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Direct form |

N M
¢ Consider y[n] = Z aryln — k] + Z brz[n — k
k=1 k=0

by v[n]
Oo——0 : O I O > O—»—0
x[n] y[n]
z 1Y A A s
by a)
x[n-1]¢ > ) q o > y[n-1]
-y | A Yz
by a
x[n—2]tl> > T" LI’ -t ‘f}’[f?—zl
I | | I
| | | |
| | | |
' by_1 : ' an 1 :
x[n-N+1] > < y[n-N +1]
= 7]
by ay
x[n-N] > < y[n—-N]
rPosT.. ...
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Direct form Il

N M
¢ Consider y[n] = Z aryln — k] + Z brz[n — k
k=1 k=0

=
=
o~
[

o—>—0 -

)

x [n]

5 A
O———O — — — — — ——O)———
N
LS
y O \
(g

rPOSTI <

] y[n]
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Direct forms example

142271 4 272
1—0.75271 4 0.125272

¢ Consider H(z) =

o > o > O > o > 0 > o) o} > O > O > O > O
x[n] yln]  x[n] yln]

Z A A ¢ Z_] A Y Z—l A

2 0.75
i S ’ O OZS O )2= )
£ Y 2_1
~0.125
———<«—0 -0.125
Direct form | Direct form I
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Cascade form

M —k
¢ Note H(z) = Zk:}gbkz
1= g arz™"

¢ Consider the most general factorization when all coefficients are real

Q- e D2 A — gz (1 — gtz
[Tet (1 —crz=) [Tz, (1 — dez 1) (1 — dfz—1)
\ )\ J

Real poles and zeros  Conjugate pairs of poles and zeros

H(z)=A

¢ Combine pairs of real factors and complex conjugate pairs into 2"4-order

factors N, B B
H(z) = H bok + b1kz"" + bapz”" » Can efficiently implement
Ee1 1 — a2zt — aggz™? 2"d-order subsystems
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Cascade form

¢ Example of 6-th order system

wy [n] yi[n] wy[n] y2[n] ws[n] y3[n]
by boo bos
x[n] | vz A | V71 | | vz | y|n]
ayy by ay bis ap b3
O————0 O——{—>—0 O——{—>—
vz vz yz!
ar by, ) by, ars by
- O - 3 O - - O -

4 Many ways to combine pairs of poles and zeros with the same overall
system function with infinite precision

+ With finite precision, the results can be quite different
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Parallel form

¢ Using partial fraction expansion

_ A Bk(l — ekz_l)
H(z) = g
(2) Z Oz ™+ Z 1 —cpz—1 T — (1—drgz~1)(1—-d;z71)

Np Ns —1
K ok + €1k2
k—0 e—1 1k 2k
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Parallel form example

® H(z)

x[n]

1+227 14272

T 1-0.752-1 +0.12522

Yoo

y[n]

-0.125
L <%

POSTE2LCH

=8+

—7+ 8271

1 —-0.752=1 +0.1252=2

18 25

=8+

1-0.5z=1 1-0.252"1

o >
x[n]

y|n]
Z_l
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Transposed forms

¢ Reverse the directions of all branches in the network
¢ Keep functions on branches (multiplications, delays, etc) the same

¢ Reverse the input and output
=>» Obtain the same system!

¢ Simple example H(z) =

o > > o > 0 < 0 o »
o] Vil v wnl

z_l Z i

a a a

(a) (b) (c)
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Another example of transposed form

L.
>

¢ w[n] =awln — 1]+ aqwln — 2|+ z[n]

y[n] = bpw[n] + byw[n — 1] + bow[n — 2]

& v[n] = box[n] + vi[n — 1]
yln] = vo[n]
vi[n] = a1y[n] + biz[n] + ve[n — 1]
va[n] = agy[n] + baz[n|

¢ Both systems represent
y[n] = a1y[n — 1] + asy[n — 2]
+ box[n] + bix[n — 1] + box[n — 2]

POSTE2LCH
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Structures for FIR systems

¢ FIR system functions have only zeros (except for poles at z=0)
¢ The difference equation reduces to

yln] = ) bra[n — K]
k=0

with the impulse response

bn n : O’ 1 ’ e e ® ’ M
hin] = .
0 otherwise
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Direct form

& Direct form

7 z z
O—> 0 > O > O—p——————0 -
x[n]
Y 1[0] YA[1] Yh[2] Yh[M=1] Yh[M]
S - Y SRRV PP P | > o > o)
yln]
& Transposed direct form
71 71 7! 7]
o, - O - O — — — — — > O > O > O
yln]
Ah[M] An[M-1] Ah[M-=2]  AhK[2) A (1] Ah[0]
o——0 O > o> ——————0 > o

x[n]
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Cascade form

¢ Factoring the polynomial system function

M Mg
— —1 —2
H(z) = E hinlz™™ = H(bOk + bikz™ " + bogz™ )
by, bg, bo
o——0 > o > o > G
x|n| y[n]
g | A e A 1y A
by, by b1mg
O—>20 C > O Oo—0
1Y A 71y A 1Y A
by b2, boy
O > O = @] o
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Course at glance

Discrete-time
signals and systems

/ \

[ Discrete-time signals ] [ Discrete-time systems
Fourier-domain Sampling and [ : /\Fllterdeﬂ | ]
representation reconstruction tructure 8

/\ [ Analysis ]

[ z-transform ] [ DFT/FFT ]
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Discrete Fourier Transform (DFT)

¢ Both time-domain sequence z[n| and its DFT X k| are discrete sequences
=> Appropriate for digital processing

¢ The complexity of direct computations

N—-1
X[kl =) zn]Wy*, 0<k<N-1
n=0

N—-1
1
z[n] = Y X[KWxR*, 0<n<N-1
k=0

proportional to N2
=>» May not be feasible for large N
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Complexity of direct DFT

¢ x[n] is complex sequence in general

¢ To compute DFT

N-—-1 N-—-1
X[kl = zn]Wx" =) [(Re{z[n]}Re{Wx"} — Im{z[n]Hm{W"})

+ j(Re{z[n]Im{WE"} — Im{a[n]}Re{WE" D], 0<k<N—1

+ Each component of X[k] requires N complex (4N real) multiplications
and (N-1) complex ((4N-2) real) additions
> X[k] requires N2 complex multiplications and N (N — 1) complex additions
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How to reduce complexity?

¢ Note WEN=™ — wkn — (wknry*

¢ Grouping
Re{z[n]}Re{W}"} + Re{z[N — n]}Re{W]’ff(N_n)}
= (Re{z[n]} + Re{z[N — n]})Re{WE"

— Im{z[n]}Im{WE"} — Im{z[N — n]Hm{WE® ™}
= —(Im{z[n]} — Im{z[N — n]})Im{Wx"

=>» Number of multiplications can be reduced by approximately a factor of 2
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Fast Fourier Transform (FFT)

¢ A class of algorithms for efficient computation of DFT
¢ Computation proportional to N logy, N
¢ FFT algorithms not applicable for all values of N

¢ In general, FFT works for N = 2" for arbitrary positive integer v

POSTE2LCH
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Butterfly computation

¢ 8-point DFT x[0]o >

x[4] . WJS »> Q A X[]]
Lo XX \\//

x[2] o » 8 O Q vv 0 X|[2]

(o N A
X e KUK

x[1] ¢ > > AR b X [4

10— 1 V’V x4

x[5] HWN o > >—Q 5 W d AA b X [5]
1 ‘ 1

x[3] o > WNO X[6]
w0 w2 \,

x[7] o=~ S N o —> > X17]
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Complexity comparison

Figure 9.26 Number of floating-point operations as a function of N for MATLAB fft { ) function (revision 5.2).

x 10° Number of FLOPS for MATLAB FFT Function

Number of FLOPS

, 6N log, N

0 | 50 100 150 200 250
Transform length N
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