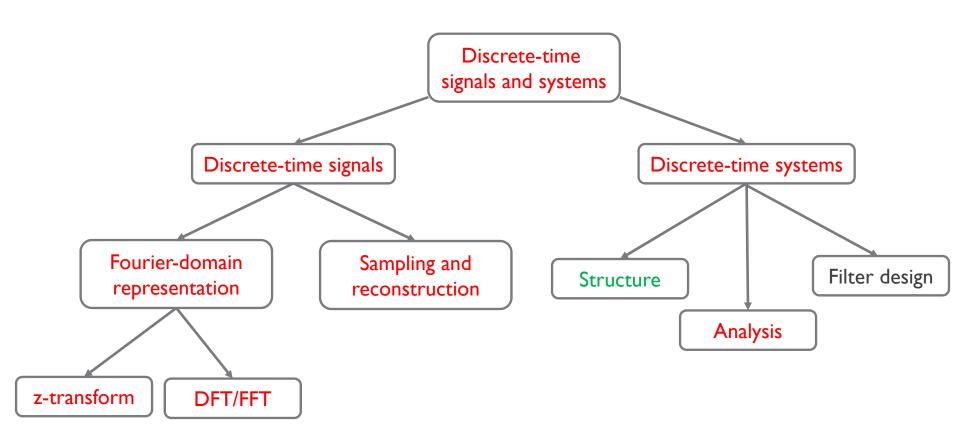


Digital Signal Processing

POSTECH

Department of Electrical Engineering Junil Choi

Course at glance



Structures for Discrete-Time Systems

System implementation

Consider LTI system with rational function

$$H(z) = \frac{b_0 + b_1 z^{-1}}{1 - a z^{-1}}, \quad |z| > |a|$$

Impulse response

$$h[n] = b_0 a^n u[n] + b_1 a^{n-1} u[n-1]$$

Linear constant-coefficient difference equation (with initial rest)

$$y[n] - ay[n-1] = b_0x[n] + b_1x[n-1]$$

- They are three equivalent representations
- How to implement this system?

Block Diagram Representation

System implementation concept

Hard to implement the system using impulse response

$$h[n] = b_0 a^n u[n] + b_1 a^{n-1} u[n-1]$$

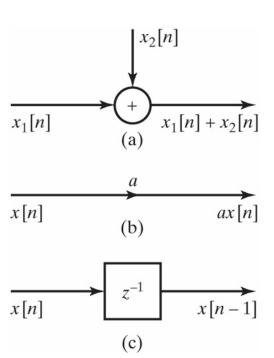
Linear constant-coefficient difference equation

$$y[n] - ay[n-1] = b_0x[n] + b_1x[n-1]$$
$$y[n] = ay[n-1] + b_0x[n] + b_1x[n-1]$$

provides the basis for an algorithm for recursive computation of the output at any time n

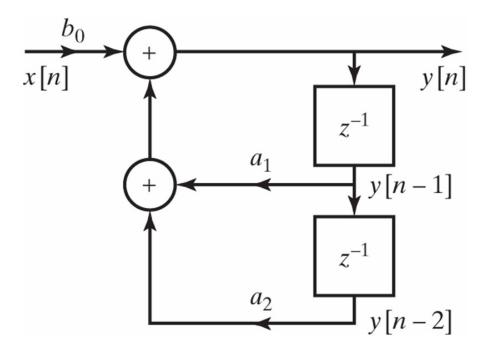
Basic elements for implementation

- Consider $y[n] = ay[n-1] + b_0x[n] + b_1x[n-1]$
- ♦ It needs
 - → Adders
 - → Multipliers
 - → Unit delays



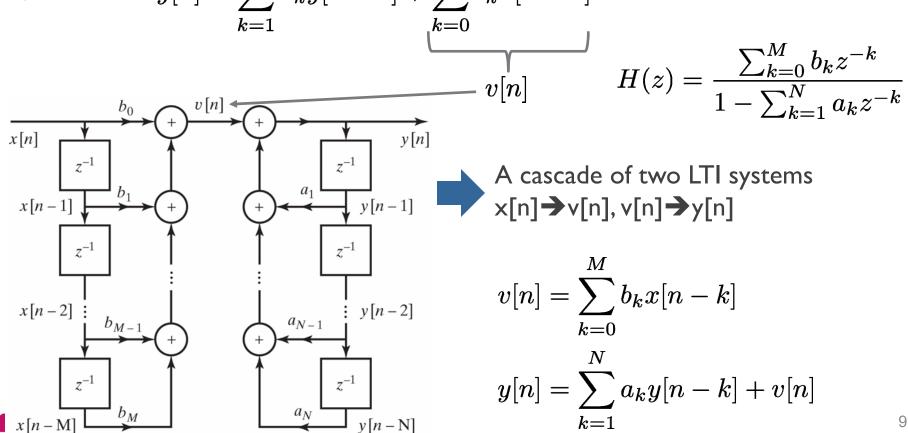
Block diagram example

- Consider $y[n] = a_1y[n-1] + a_2y[n-2] + b_0x[n]$
- The system can be implemented as



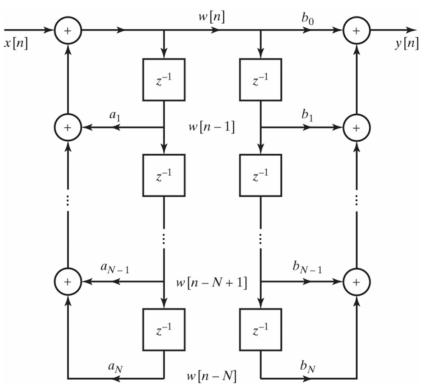
General higher-order difference equations

• Consider $y[n] = \sum_{k=0}^{\infty} a_k y[n-k] + \sum_{k=0}^{\infty} b_k x[n-k]$



Rearrangement of block diagram

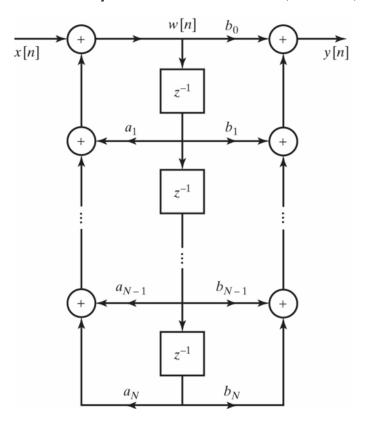
 Since convolution is commutative, the order of two LTI systems can be reversed while having the same output



$$egin{aligned} w[n] &= \sum_{k=1}^N a_k w[n-k] + x[n] \ y[n] &= \sum_{k=0}^M b_k w[n-k] \end{aligned}$$

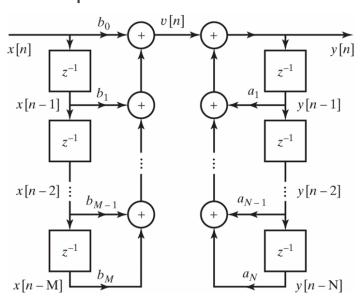
Minimum delay implementation

lacktriangle The minimum number of delay elements: $\max(N,M)$

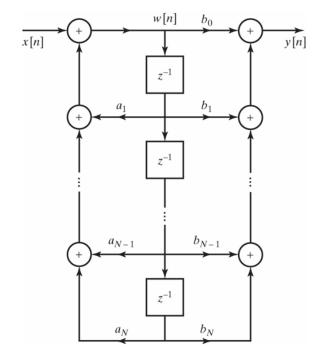


Direct forms I and II

- Direct form I
 - → Direct realization of difference equation



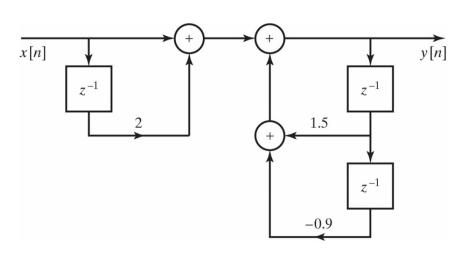
- ◆ Direct form II (canonic form)
 - → With minimum number of delays

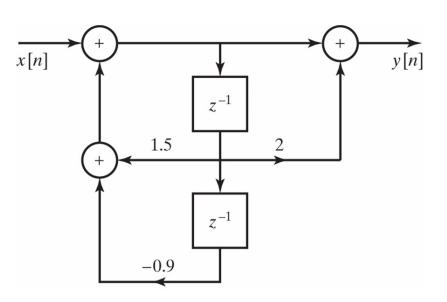


Example

• Consider $H(z) = \frac{1 + 2z^{-1}}{1 - 1.5z^{-1} + 0.9z^{-2}}$

$$y[n] = 1.5y[n-1] - 0.9y[n-2] + x[n] + 2x[n-1]$$





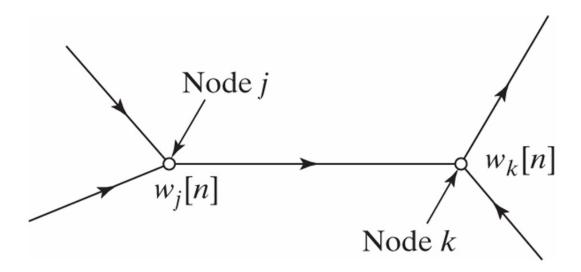
Direct form I

Direct form II

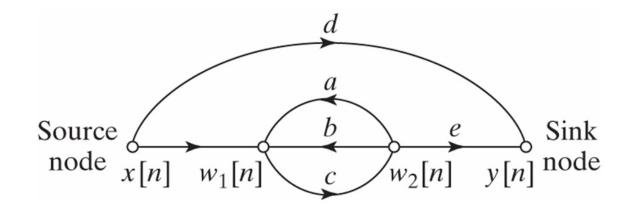
Signal Flow Graph Representation

Signal flow graph

- ◆ Essentially the same as block diagram representation
 - + Exist a few notational differences
 - ★ Represent a network with nodes and branches

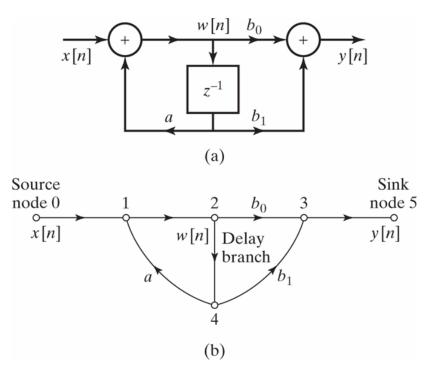


Example of signal flow graph



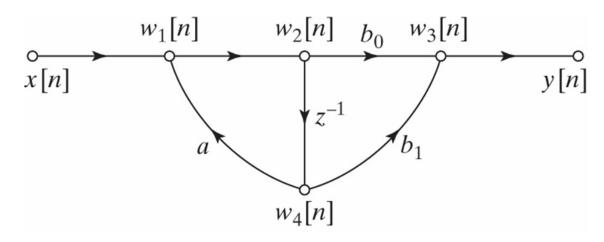
 $lack Note \ w_1[n]=x[n]+aw_2[n]+bw_2[n] \ w_2[n]=cw_1[n] \ y[n]=dx[n]+ew_2[n]$

Block vs. signal flow graph representation



- Nodes in signal flow graph represent both branching points and adders
- ◆ In the block diagram a special symbol is used for adders and a node has only one incoming branch.

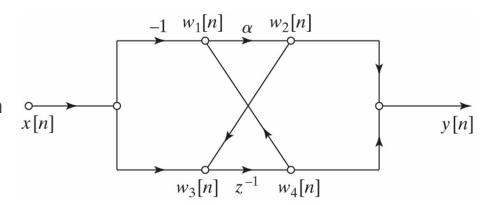
Actual signal flow graph representation



$$w_1[n] = aw_4[n] + x[n]$$
 $w_2[n] = w_1[n]$
 $w_3[n] = b_0w_2[n] + b_1w_4[n]$
 $w_4[n] = w_2[n-1]$
 $w_4[n] = w_3[n]$
 $w_2[n] = aw_2[n-1] + x[n]$
 $y[n] = b_0w_2[n] + b_1w_2[n-1]$

Signal flow graph with z-transformation

- Consider the graph
 - → Not a direct form
 - → Cannot obtain H(z) by inspection
 - + How to obtain H(z)?



lacktriangle Each node is $w_1[n]=w_4[n]-x[n]$ $w_2[n]=\alpha w_1[n]$ $w_3[n]=w_2[n]+x[n]$ Difficult to solve due to delay $w_4[n]=w_3[n-1]$ Use z-transform! $y[n]=w_2[n]+w_4[n]$

Signal flow graph with z-transformation

$$lack extbf{z-transform equations} egin{aligned} W_1(z) &= W_4(z) - X(z) \ W_2(z) &= lpha W_1(z) \ W_3(z) &= W_2(z) + X(z) \ W_4(z) &= z^{-1} W_3(z) \ Y(z) &= W_2(z) + W_4(z) \end{aligned}$$

After removing some variables

$$W_{2}(z) = \alpha(W_{4}(z) - X(z))$$

$$W_{4}(z) = z^{-1}(W_{2}(z) + X(z))$$

$$Y(z) = W_{2}(z) + W_{4}(z)$$

$$W_{2}(z) = \frac{\alpha(z^{-1} - 1)}{1 - \alpha z^{-1}}X(z)$$

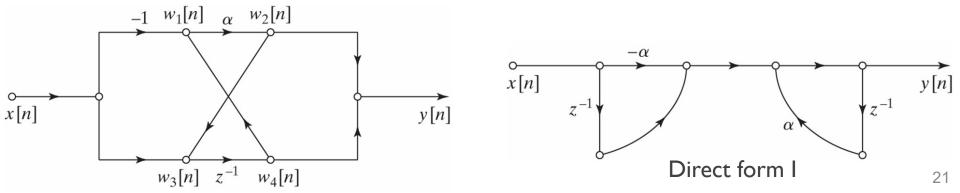
$$W_{4}(z) = \frac{z^{-1}(1 - \alpha)}{1 - \alpha z^{-1}}X(z)$$

Signal flow graph with z-transformation

- Output becomes $Y(z) = \left(\frac{z^{-1} \alpha}{1 \alpha z^{-1}}\right) X(z)$
- ightharpoonup All-pass system with real lpha ightharpoonup System function and corresponding impulse response

$$H(z) = \left(rac{z^{-1} - lpha}{1 - lpha z^{-1}}
ight), \;\;\; h[n] = lpha^{n-1} u[n-1] - lpha^{n+1} u[n]$$

Comparing two representations: requires different computational resources

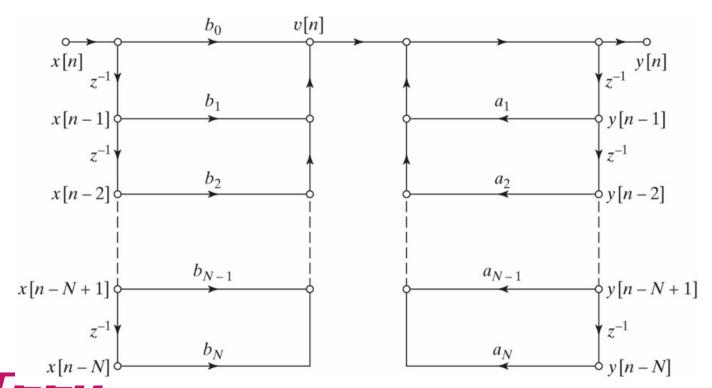


Basic structure for IIR systems

- Similar to block-diagram representation, there can be various ways to represent a system using signal flow graph
 - Direct form I
 - → Direct form II (canonic direct form)
 - → Cascade form
 - → Parallel form

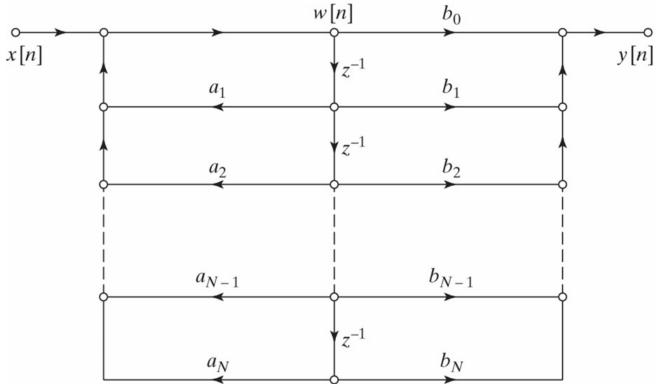
Direct form I

• Consider $y[n] = \sum_{k=1}^{N} a_k y[n-k] + \sum_{k=0}^{M} b_k x[n-k]$



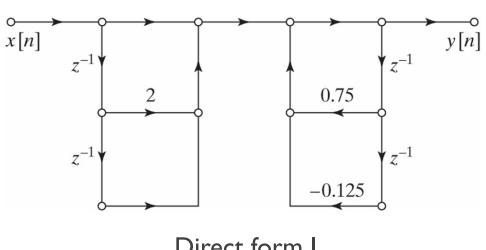
Direct form II

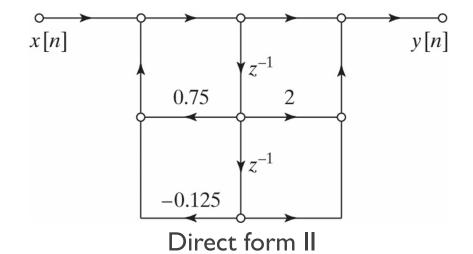
• Consider $y[n] = \sum_{k=1}^{N} a_k y[n-k] + \sum_{k=0}^{N} b_k x[n-k]$



Direct forms example

• Consider
$$H(z) = \frac{1 + 2z^{-1} + z^{-2}}{1 - 0.75z^{-1} + 0.125z^{-2}}$$





Cascade form

- Note $H(z) = \frac{\sum_{k=0}^{M} b_k z^{-k}}{1 \sum_{k=0}^{N} a_k z^{-k}}$
- Consider the most general factorization when all coefficients are real

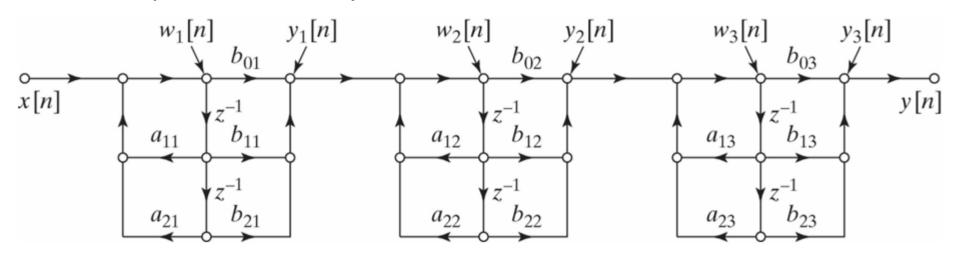
$$H(z) = A \frac{\prod_{k=1}^{M_1} (1 - f_k z^{-1}) \prod_{k=1}^{M_2} (1 - g_k z^{-1}) (1 - g_k^* z^{-1})}{\prod_{k=1}^{N_1} (1 - c_k z^{-1}) \prod_{k=1}^{N_2} (1 - d_k z^{-1}) (1 - d_k^* z^{-1})}$$
 Real poles and zeros Conjugate pairs of poles and zeros

Combine pairs of real factors and complex conjugate pairs into 2nd-order factors

$$H(z) = \prod_{k=1}^{N_s} \frac{b_{0k} + b_{1k}z^{-1} + b_{2k}z^{-2}}{1 - a_{1k}z^{-1} - a_{2k}z^{-2}}$$
 Can efficiently implement 2nd-order subsystems

Cascade form

Example of 6-th order system



- Many ways to combine pairs of poles and zeros with the same overall system function with infinite precision
 - → With finite precision, the results can be quite different

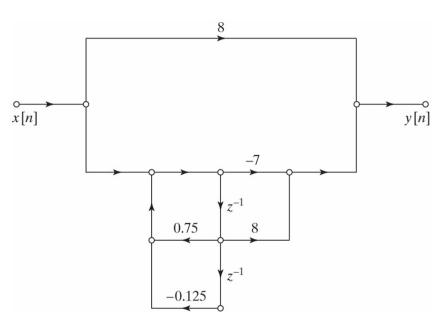
Parallel form

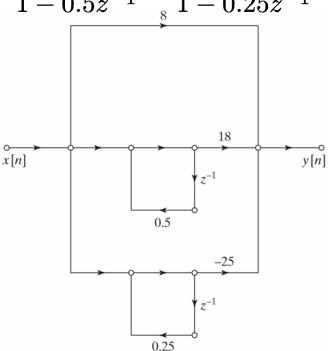
Using partial fraction expansion

$$H(z) = \sum_{k=0}^{N_p} C_k z^{-k} + \sum_{k=1}^{N_1} \frac{A_k}{1 - c_k z^{-1}} + \sum_{k=1}^{N_2} \frac{B_k (1 - e_k z^{-1})}{(1 - d_k z^{-1})(1 - d_k^* z^{-1})}$$

$$= \sum_{k=0}^{N_p} C_k z^{-k} + \sum_{k=1}^{N_s} \frac{e_{0k} + e_{1k} z^{-1}}{1 - a_{1k} z^{-1} - a_{2k} z^{-2}}$$

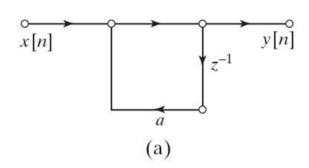
Parallel form example

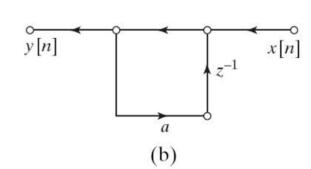


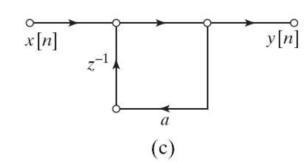


Transposed forms

- Reverse the directions of all branches in the network
- ◆ Keep functions on branches (multiplications, delays, etc) the same
- Reverse the input and output
 - → Obtain the same system!
- Simple example $H(z) = \frac{1}{1 az^{-1}}$

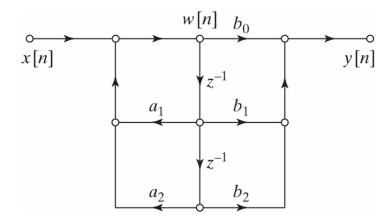


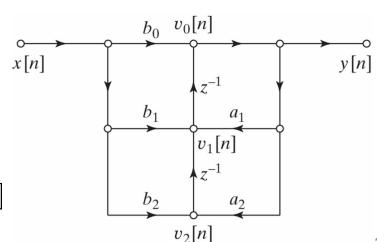




Another example of transposed form

- $w[n] = a_1 w[n-1] + a_2 w[n-2] + x[n]$ $y[n] = b_0 w[n] + b_1 w[n-1] + b_2 w[n-2]$
- $igstar{igstar} v_0[n] = b_0 x[n] + v_1[n-1] \ y[n] = v_0[n] \ v_1[n] = a_1 y[n] + b_1 x[n] + v_2[n-1] \ v_2[n] = a_2 y[n] + b_2 x[n]$
- lack lack Both systems represent $y[n] = a_1y[n-1] + a_2y[n-2] \ + b_0x[n] + b_1x[n-1] + b_2x[n-2]$





Structures for FIR systems

- ◆ FIR system functions have only zeros (except for poles at z=0)
- The difference equation reduces to

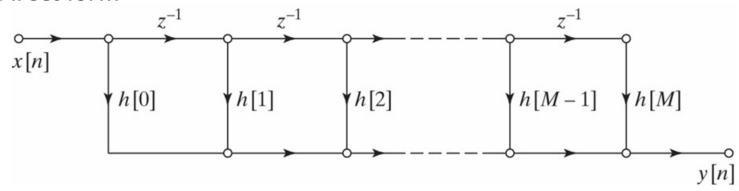
$$y[n] = \sum_{k=0}^{M} b_k x[n-k]$$

with the impulse response

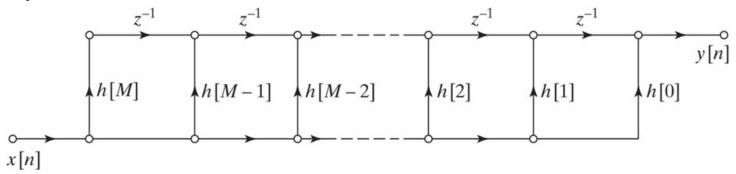
$$h[n] = \begin{cases} b_n & n = 0, 1, \dots, M \\ 0 & \text{otherwise} \end{cases}$$

Direct form

Direct form



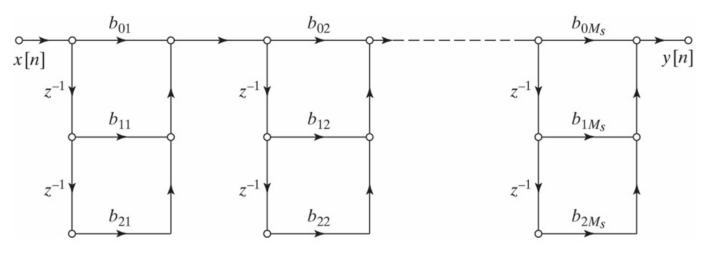
◆ Transposed direct form



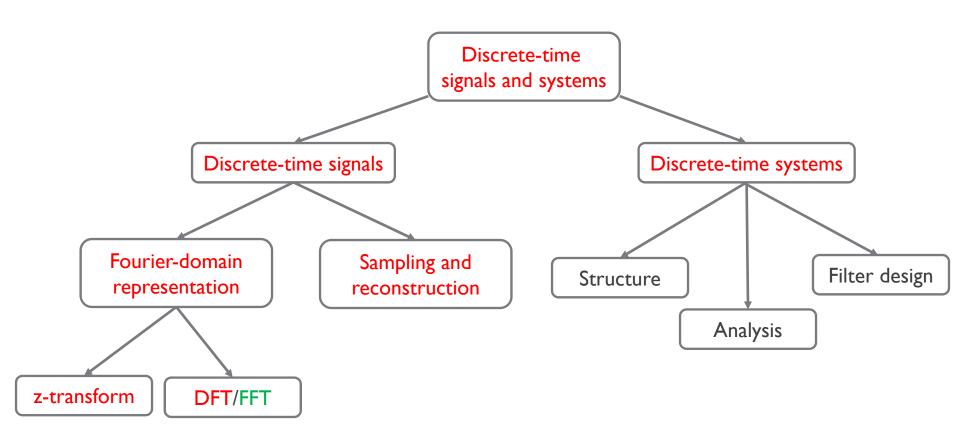
Cascade form

Factoring the polynomial system function

$$H(z) = \sum_{n=0}^{M} h[n]z^{-n} = \prod_{k=1}^{M_s} (b_{0k} + b_{1k}z^{-1} + b_{2k}z^{-2})$$



Course at glance



Discrete Fourier Transform (DFT)

- lacktriangle Both time-domain sequence x[n] and its DFT X[k] are discrete sequences
 - → Appropriate for digital processing
- The complexity of direct computations

$$X[k] = \sum_{n=0}^{N-1} x[n]W_N^{kn}, \quad 0 \le k \le N-1$$

$$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] W_N^{-kn}, \quad 0 \le n \le N-1$$

proportional to N^2

 \rightarrow May not be feasible for large N

Complexity of direct DFT

- \bullet x[n] is complex sequence in general
- ◆ To compute DFT

$$\begin{split} X[k] &= \sum_{n=0}^{N-1} x[n] W_N^{kn} = \sum_{n=0}^{N-1} \left[(\text{Re}\{x[n]\} \text{Re}\{W_N^{kn}\} - \text{Im}\{x[n]\} \text{Im}\{W_N^{kn}\}) \right. \\ &+ j(\text{Re}\{x[n]\} \text{Im}\{W_N^{kn}\} - \text{Im}\{x[n]\} \text{Re}\{W_N^{kn}\}) \right], \quad 0 \leq k \leq N-1 \end{split}$$

- → Each component of X[k] requires N complex (4N real) multiplications and (N-1) complex ((4N-2) real) additions
 - ightharpoonup X[k] requires N^2 complex multiplications and N(N-1) complex additions

How to reduce complexity?

- $\bullet \quad \text{Note} \quad W_N^{k(N-n)} = W_N^{-kn} = (W_N^{kn})^*$
- Grouping

$$\begin{aligned} & \operatorname{Re}\{x[n]\}\operatorname{Re}\{W_{N}^{kn}\} + \operatorname{Re}\{x[N-n]\}\operatorname{Re}\{W_{N}^{k(N-n)}\} \\ & = (\operatorname{Re}\{x[n]\} + \operatorname{Re}\{x[N-n]\})\operatorname{Re}\{W_{N}^{kn}\} \\ & - \operatorname{Im}\{x[n]\}\operatorname{Im}\{W_{N}^{kn}\} - \operatorname{Im}\{x[N-n]\}\operatorname{Im}\{W_{N}^{k(N-n)}\} \\ & = -(\operatorname{Im}\{x[n]\} - \operatorname{Im}\{x[N-n]\})\operatorname{Im}\{W_{N}^{kn}\} \end{aligned}$$

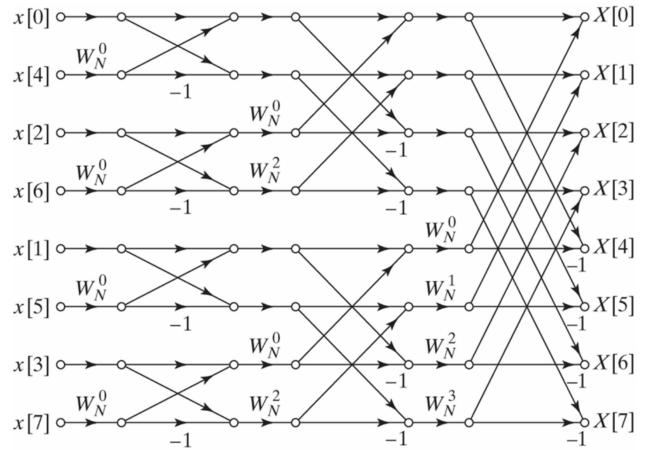
→ Number of multiplications can be reduced by approximately a factor of 2

Fast Fourier Transform (FFT)

- ◆ A class of algorithms for efficient computation of DFT
- lacktriangle Computation proportional to $N\log_2 N$
- lacktriangle FFT algorithms not applicable for all values of N
- lacktriangle In general, FFT works for $N=2^v$ for arbitrary positive integer v

Butterfly computation

• 8-point DFT $x[0] \sim$



Complexity comparison

Figure 9.26 Number of floating-point operations as a function of N for MATLAB fft () function (revision 5.2).

