

Digital Signal Processing

POSTECH

Department of Electrical Engineering Junil Choi

Fourier Transform Representations

Why frequency response important?

lacktriangle A broad class of signals can be represented as $x[n] = \sum_k \alpha_k e^{j\omega_k n}$

$$ightharpoonup$$
 Example: $A\cos(\omega_0 n + \phi) = \frac{A}{2}e^{j\phi}e^{j\omega_0 n} + \frac{A}{2}e^{-j\phi}e^{-j\omega_0 n}$

◆ The output of LTI system is

$$y[n] = \sum_{k} \alpha_k H(e^{j\omega_k}) e^{j\omega_k n}$$

• If we know $H(e^{j\omega_k})$ for all k, the output of the LTI system can be easily computed

Frequency-domain representation

- ◆ Fourier transform pair
 - → Many sequences can be represented as

$$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) e^{j\omega n} d\omega$$
 Inverse Fourier transform

where

$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$$
 (Discrete-time) Fourier transform

Note that x[n] is represented as a superposition of infinitesimally small complex sinusoids $\frac{1}{2\pi}X(e^{j\omega})e^{j\omega n}d\omega$

with ω ranging over an interval of length 2π

Sufficient condition for Fourier transform

Fourier transform should be finite to exist

$$|X(e^{j\omega})| < \infty$$
 for all ω

Sufficient condition for the convergence of $X(e^{j\omega})$

Not necessary
$$|X(e^{j\omega})| = \left|\sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}\right|$$

$$\leq \sum_{n=0}^{\infty} |x[n]| |e^{-j\omega n}|$$

$$\leq \sum_{n=-\infty}^{\infty} |x[n]| < \infty$$

All absolutely summable sequences have Fourier transform

Not absolutely summable sequences

lacktriangle Consider square summable $\sum_{n=-\infty}^{\infty}|x[n]|^2<\infty$

For such sequences, mean-square convergence exists

$$\lim_{M \to \infty} \int_{-\pi}^{\pi} |X(e^{j\omega}) - X_M(e^{j\omega})|^2 d\omega = 0$$

where

$$X_M(e^{j\omega}) = \sum_{n=-M}^{M} x[n]e^{-j\omega n}$$

Sequences neither absolutely nor square summable

◆ Constant sequence: x[n]=I for all n

Impulse train with period
$$2\pi$$
 $X(e^{j\omega}) = \sum_{r=-\infty}^{\infty} 2\pi \delta(\omega + 2\pi r)$

lacktriangle Complex exponential sequence: $x[n]=e^{j\omega_0 n}$ Shifted impulse train $X(e^{j\omega})=\sum^{\infty}\ 2\pi\delta(\omega-\omega_0+2\pi r)$

lacktriangle Generalization of exponential sequence $x[n] = \sum_k a_k e^{j\omega_k n}$ $X(e^{j\omega}) = \sum_k \sum_j 2\pi a_k \delta(\omega - \omega_k + 2\pi r)$

Symmetry properties of Fourier transform

Table 2.1	in book	Sequence $x[n]$	Fourier Transform $X(e^{j\omega})$
	1. $x^*[n]$		$X^*(e^{-j\omega})$
	2. $x^*[-n]$	1	$X^*(e^{j\omega})$
	3. $\mathcal{R}e\{x[t]$	1]}	$X_e(e^{j\omega})$ (conjugate-symmetric part of $X(e^{j\omega})$)
	4. $j\mathcal{I}m\{x$	[n]	$X_o(e^{j\omega})$ (conjugate-antisymmetric part of $X(e^{j\omega})$)
	5. $x_e[n]$	(conjugate-symmetric part of $x[n]$)	$X_R(e^{j\omega}) = \mathcal{R}e\{X(e^{j\omega})\}$
	6. $x_o[n]$	(conjugate-antisymmetric part of $x[n]$)	$jX_{I}(e^{j\omega}) = j\mathcal{I}m\{X(e^{j\omega})\}$
		The following p	properties apply only when $x[n]$ is real:
	7. Any re	eal $x[n]$	$X(e^{j\omega}) = X^*(e^{-j\omega})$ (Fourier transform is conjugate symmetric)
	8. Any real x[n]9. Any real x[n]		$X_R(e^{j\omega}) = X_R(e^{-j\omega})$ (real part is even)
			$X_I(e^{j\omega}) = -X_I(e^{-j\omega})$ (imaginary part is odd)
	10. Any re	$\operatorname{eal} x[n]$	$ X(e^{j\omega}) = X(e^{-j\omega}) $ (magnitude is even)
	11. Any re	eal $x[n]$	$\angle X(e^{j\omega}) = -\angle X(e^{-j\omega})$ (phase is odd)
	12. $x_e[n]$	(even part of $x[n]$)	$X_R(e^{j\omega})$
	13. $x_o[n]$	(odd part of $x[n]$)	$jX_I(e^{j\omega})$

Fourier transform theorems

TABLE 2.2 FOURIER TRANSFORM THEOREMS

Sequence	Fourier Transform
x[n]	$X(e^{j\omega})$
y[n]	$Y(e^{j\omega})$
$1. \ ax[n] + by[n]$	$aX(e^{j\omega}) + bY(e^{j\omega})$
2. $x[n-n_d]$ (n_d an integer)	$e^{-j\omega n_d}X(e^{j\omega})$
3. $e^{j\omega_0 n}x[n]$	$X(e^{j(\omega-\omega_0)})$
4. $x[-n]$	$X(e^{-j\omega})$ $X^*(e^{j\omega})$ if $x[n]$ real.
5. nx[n]	$j\frac{dX\left(e^{j\omega}\right)}{d\omega}$
6. x[n] * y[n]	$X(e^{j\omega})Y(e^{j\omega})$
7. $x[n]y[n]$	$\frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\theta}) Y(e^{j(\omega-\theta)}) d\theta$
Parseval's theorem:	
8. $\sum_{n=0}^{\infty} x[n] ^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) ^2 d\omega$	Periodic convolution

$$8.\sum_{n=-\infty}^{\infty}|x[n]|^2=\frac{1}{2\pi}\int_{-\pi}^{\pi}|X\left(e^{j\omega}\right)|^2d\omega$$

9.
$$\sum_{n=-\infty}^{\infty} x[n]y^*[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega})Y^*(e^{j\omega})d\omega$$

Useful Fourier transform pairs

TABLE 2.3 FOURIER TRANSFORM PAIRS

Sequence	Fourier Transform
1. $\delta[n]$	1
2. $\delta[n - n_0]$	$e^{-j\omega n_0}$
3. 1 $(-\infty < n < \infty)$	$\sum_{k=-\infty}^{\infty} 2\pi \delta(\omega + 2\pi k)$
4. $a^n u[n]$ (a < 1)	$\frac{1}{1 - ae^{-j\omega}}$
5. u[n]	$\frac{1}{1 - e^{-j\omega}} + \sum_{k = -\infty}^{\infty} \pi \delta(\omega + 2\pi k)$
6. $(n+1)a^nu[n]$ $(a < 1)$	$\frac{1}{(1-ae^{-j\omega})^2}$
7. $\frac{r^n \sin \omega_p(n+1)}{\sin \omega_p} u[n] (r < 1)$	$\frac{1}{1 - 2r\cos\omega_p e^{-j\omega} + r^2 e^{-j2\omega}}$
8. $\frac{\sin \omega_c n}{\pi n}$	$X(e^{j\omega}) = \begin{cases} 1, & \omega < \omega_c, \\ 0, & \omega_c < \omega \le \pi \end{cases}$
9. $x[n] = \begin{cases} 1, & 0 \le n \le M \\ 0, & \text{otherwise} \end{cases}$	$\frac{\sin[\omega(M+1)/2]}{\sin(\omega/2)}e^{-j\omega M/2}$
10. $e^{j\omega_0 n}$	$\sum_{k=-\infty}^{\infty} 2\pi \delta(\omega - \omega_0 + 2\pi k)$
11. $\cos(\omega_0 n + \phi)$	$\sum_{k=-\infty}^{\infty} \left[\pi e^{j\phi} \delta(\omega - \omega_0 + 2\pi k) + \pi e^{-j\phi} \delta(\omega + \omega_0 + 2\pi k)\right]$

Using Fourier transform theorems and pairs

- Using the tables, we can
 - → Compute Fourier transform of sequences without complex computations
 - → Compute inverse Fourier transform
 - + Example: $\mathcal{F}\{a^nu[n-5]\}=?$

$$x_1[n] = a^n u[n] \stackrel{\mathcal{F}}{\longleftrightarrow} X_1(e^{j\omega}) = \frac{1}{1 - ae^{-j\omega}}$$

$$x_2[n] = x_1[n - 5] \stackrel{\mathcal{F}}{\longleftrightarrow} X_2(e^{j\omega}) = e^{-j5\omega} X_1(e^{j\omega}) = \frac{e^{-j5\omega}}{1 - ae^{-j\omega}}$$

$$x[n] = a^5 x_2[n] \stackrel{\mathcal{F}}{\longleftrightarrow} X(e^{j\omega}) = \frac{a^5 e^{-j5\omega}}{1 - ae^{-j\omega}}$$

Another example

Consider the difference equation

$$y[n] - rac{1}{2}y[n-1] = x[n] - rac{1}{4}x[n-1]$$

lacktriangle To get the impulse response, set $x[n] = \delta[n]$, which gives y[n] = h[n]

$$h[n] - \frac{1}{2}h[n-1] = \delta[n] - \frac{1}{4}\delta[n-1]$$

Fourier transform gives

$$H(e^{j\omega}) - \frac{1}{2}e^{-j\omega}H(e^{j\omega}) = 1 - \frac{1}{4}e^{-j\omega}$$

$$H(e^{j\omega}) = \frac{1 - \frac{1}{4}e^{-j\omega}}{1 - \frac{1}{2}e^{-j\omega}}$$

Another example

• Decompose
$$H(e^{j\omega}) = \frac{1}{1 - \frac{1}{2}e^{-j\omega}} - \frac{\frac{1}{4}e^{-j\omega}}{1 - \frac{1}{2}e^{-j\omega}}$$

By using the table

$$\left(\frac{1}{2}\right)^n u[n] \stackrel{\mathcal{F}}{\longleftrightarrow} \frac{1}{1 - \frac{1}{2}e^{-j\omega}}, \quad -\left(\frac{1}{4}\right) \left(\frac{1}{2}\right)^{n-1} u[n-1] \stackrel{\mathcal{F}}{\longleftrightarrow} -\frac{\frac{1}{4}e^{-j\omega}}{1 - \frac{1}{2}e^{-j\omega}}$$

h[n] becomes

$$h[n] = \left(\frac{1}{2}\right)^n u[n] - \left(\frac{1}{4}\right) \left(\frac{1}{2}\right)^{n-1} u[n-1]$$

Read Examples 2.23-2.24 in the textbook

Auto/cross-correlations of Deterministic Signals

Definitions

lacktriangle Autocorrelation $c_{xx}[\ell] = \sum_{n=-\infty}^{\infty} x[n] x^*[n-\ell]$ Conjugate for complex sequences

$$lacktriangle$$
 Cross-correlation $c_{xy}[\ell] = \sum_{n=-\infty}^{\infty} x[n] y^*[n-\ell]$

Relation to convolution: missing initial fold step

$$c_{xy}[\ell] = x[\ell] * y^*[-\ell]$$

 $c_{xx}[\ell] = x[\ell] * x^*[-\ell]$

Pseudo-noise (PN) sequence

• Let
$$x[n] = \{1, 1, 1, -1, -1, 1, -1\}$$
 $\{1, 1, 1, -1, -1, 1, -1\} - n = 0$

Autocorrelation

$$c_{xx}[\ell] = \sum_{n=-\infty}^{\infty} x[n]x^*[n-\ell]$$

- ◆ Example of Barker code
- Sharp peak at $\ell = 0$
- Time-delay estimation in radar

Radar example

- Transmit pulse $S_a(t)$
- Received "echo" after reflection off object

Radar example

- Sampled version $y[n] = \Gamma S_a(nT_s \tau_d) + w[n]$
- Assume sampling high enough: $\tau_d = DT_s$, where D is integer

$$S_a(nT_s - DT_s) = S_a((n-D)T_s) = s[n-D], \text{ where } s[n] = S_a(nT_s)$$

Discrete-time (DT) model

$$y[n] = \Gamma s[n-D] + w[n] = s[n] * \Gamma \delta[n-D] + w[n]$$

→ Without noise, it can be modeled as an LTI system

$$x[n] \longrightarrow h[n] = \Gamma \delta[n-D] \longrightarrow y[n]$$

• Use cross-correlation to estimate D \Rightarrow $R = \frac{cDT_s}{2}$

Radar example

 $n=-\infty$

 $n=-\infty$

Assume s[n] is a real signal, e.g., Barker code $lacktriangledow c_{ys}[\ell] = \sum_{j} y[n]s[n-\ell]$

$$= \sum \left(\Gamma s[n-D] + w[n] \right) s[n-\ell]$$

$$=\sum_{n} \Gamma s[n-D]s[n-\ell] + \sum_{n} w[n]s[n-\ell]$$

$$=\Gamma \sum s[n']s[n'-(\ell-D)] + c_{ws}[\ell]$$

$$= c_{ss}[\ell - D] + c_{ws}[\ell]$$

Peak at $\ell = D$

Properties of autocorrelation sequences

◆ Three main properties of autocorrelation sequence

$$c_{xx}[\ell] = x[\ell] * x^*[-\ell]$$

$$+ |c_{xx}[\ell]| \le c_{xx}[0] = \sum_{n=-\infty}^{\infty} x^2[n] = \text{energy}$$

$$+\sum_{\ell=-\infty}^{\infty} c_{xx}[\ell]e^{-j\omega\ell} \ge 0, \text{ for all } \omega$$

Input/output relationships for LTI system

$$c_{yx}[\ell] = c_{xx}[\ell] * h[\ell]$$

 $lacktriangledown c_{yx}[\ell] = c_{xx}[\ell] * h[\ell]$ $lacktriangledown c_{yy}[\ell] = c_{xx}[\ell] * c_{hh}[\ell]$ Try to prove these

Discrete-Time Random Signals

Why random?

- So far, all signals are assumed to be deterministic
 - → Sequence is uniquely determined by a mathematical expression
- In many situations, the processes that generate signals are so complex
 - → Modeling water flow, wind turbulence, etc
- Modeling a signal as a random process analytically useful

Discrete-time random signals

Each sample is a random variable following a certain probability density function

Collection of random variables is referred to as a random process

Random process

- Hard to completely describe a random process
 - → Need to know individual and joint probability distributions of all random variables
- Many cases, descriptions in terms of averages are useful
 - → Mean / Autocorrelation / Autocovariance
- lacktriangle Let x_n represent the random variable of the sequence ${\sf x}[{\sf n}]$ at time ${\sf n}$
 - lacktriangle Precisely, x_n is a random variable and x[n] is a specific realization of x_n at time n
 - → It is not necessary to distinguish them in this course.
 - lacktriangle We will use x_n and x[n] interchangeably
- Focus on real signals

Wide-sense stationary (WSS) random signals

 \bullet The mean of random process x[n] at time n is

$$m_x[n] = \mathcal{E}\{x[n]\}$$

lack The autocorrelation of x[n] is

$$\phi_{xx}[n, n+m] = \mathcal{E}\left\{x[n]x[n+m]\right\}$$

◆ If x[n] is wide-sense stationary random process, then

$$m_x[n] = m_x, \quad \text{for all } n$$
 $\phi_{xx}[n, n+m] = \phi_{xx}[m], \quad \text{for all } n \text{ and } m$

Constant!

Input-output relation of LTI systems

lacktriangle Recall a LTI system $y[n] = \sum_{k=-\infty}^{\infty} h[k]x[n-k]$

With WSS input, the mean of output becomes

$$m_y[n] = \mathcal{E}\{y[n]\} = \sum_{k=-\infty}^{\infty} h[k]\mathcal{E}\{x[n-k]\} = m_x \sum_{k=-\infty}^{\infty} h[k]$$

→ Alternative expression

$$m_y = H(e^{j0})m_x$$

Input-output relation of LTI systems

Autocorrelation of output is

$$\phi_{yy}[n,n+m] = \mathcal{E}\{y[n]y[n+m]\}$$

$$= \mathcal{E}\left\{\sum_{k=-\infty}^{\infty}\sum_{r=-\infty}^{\infty}h[k]h[r]x[n-k]x[n+m-r]\right\}$$

$$= \sum_{k=-\infty}^{\infty}h[k]\sum_{r=-\infty}^{\infty}h[r]\mathcal{E}\left\{x[n-k]x[n+m-r]\right\}$$

$$= \sum_{k=-\infty}^{\infty}h[k]\sum_{r=-\infty}^{\infty}h[r]\phi_{xx}[m+k-r]$$

$$= \phi_{yy}[m]$$
Not a function of $n!$

Input-output relation of LTI systems

Further look on output autocorrelation

- $lacktriangleq \operatorname{Recall} \phi_{yy}[m] = \sum_{k=-\infty}^{\infty} h[k] \sum_{r=-\infty}^{\infty} h[r] \phi_{xx}[m+k-r]$
- lacktriangle By taking the substitution $\ell=r-k$

$$\phi_{yy}[m] = \sum_{\ell=-\infty}^{\infty} \phi_{xx}[m-\ell] \sum_{k=-\infty}^{\infty} h[k]h[\ell+k] = \sum_{\ell=-\infty}^{\infty} \phi_{xx}[m-\ell]c_{hh}[\ell]$$

where

$$c_{hh}[\ell] = \sum_{k=-\infty}^{\infty} h[k]h[\ell+k] = h[\ell] * h[-\ell]$$

Deterministic autocorrelation sequence of $h[\ell]$

Since $h[\ell]$ is assumed to be real, $c_{hh}[-\ell] = c_{hh}[\ell]$

Convolution

Fourier transform of autocorrelations

• Let
$$\phi_{xx}[n] \stackrel{\mathcal{F}}{\longleftrightarrow} \Phi_{xx}(e^{j\omega}), \ \phi_{yy}[n] \stackrel{\mathcal{F}}{\longleftrightarrow} \Phi_{yy}(e^{j\omega}), \ c_{hh}[n] \stackrel{\mathcal{F}}{\longleftrightarrow} C_{hh}(e^{j\omega})$$

$$lacktriangle$$
 Because $\phi_{yy}[m] = \sum_{\ell=-\infty}^{\infty} \phi_{xx}[m-\ell]c_{hh}[\ell]$

$$c_{hh}[\ell] = h[n] * h[-n] \stackrel{\mathcal{F}}{\longleftrightarrow} H(e^{j\omega})H^*(e^{j\omega}) = |H(e^{j\omega})|^2$$

we have
$$\Phi_{yy}(e^{j\omega})=C_{hh}(e^{j\omega})\Phi_{xx}(e^{j\omega})$$

$$=|H(e^{j\omega})|^2\Phi_{xx}(e^{j\omega})$$

Power density spectrum or power spectrum density

$$\mathcal{E}\{y^{2}[n]\} = \phi_{yy}[0] = \frac{1}{2\pi} \int_{-\pi}^{\pi} \Phi_{yy}(e^{j\omega}) d\omega$$

Note on energy/power signals

- Energy signal
 - lacktriangledown If a sequence has a finite energy $E_x = \sum |x[n]|^2$ $n=-\infty$
 - → Fourier transform of autocorrelation of energy signal
 - → Energy spectrum density
- Power signal
- Yower signal lacktriangle If a sequence has a finite average power $P = \lim_{M o \infty} \frac{1}{2M} \sum_{n=-M}^M |x[n]|^2$
 - → Fourier transform of autocorrelation of power signal
 - → Power spectrum density

Course at glance

