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Signal Flow Graph Representation
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Signal flow graph with z-transformation

¢ Consider the graph
4+ Not a direct form

+ Cannot obtain H(z) by inspection

+ How to obtain H(z)?

¢ Each nodeis w;
w2
w3
Wy

Y

EREIREINEINE]
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Difficult to solve due to delay
Use z-transform!



Signal flow graph with z-transformation

¢ After removing some variables

W2(Z) = Oé(W4(Z) — X(Z)) WQ(Z) = 061(2_1 __:1L)X(Z)
Wi(z) = 27 H(Wa(2) + X (2)) » Z—l_(f - )
Y(z) = Wa(z) + Wy(z) Walz) = 1 —az1 X(2)
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Basic structure for lIR systems

¢ Similar to block-diagram representation, there can be various ways to
represent a system using signal flow graph

+ Direct form |
+ Direct form Il (canonic direct form)
+ Cascade form

4+ Parallel form
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Direct form |

N M
¢ Consider y[n| = Z aryln — k| + Z brz[n — k|
k=0

k=1
by v[n]

O—>—0 O : o O > O—»—20
x[n] y[n]
| A A [ 7]
bl a
x[n-1]¢ > ) o < > y[n-1]
2.—] Y A A 1,2—1
b, )
x[n—2]tl> > T" LI’ -t ‘f}’[f?—zl
I | | I
| | | |
I I | I
I bN—l | | ay_1 I
x[n-N+1] > = y[ln-N+1]
7! =
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Direct form Il

Zaky[n -

¢ Consider y[n| =

k=0
wn] by
C > O : 0O - Py > o
x[n] 1 yln]
a b,
7]
a e
3 v -
| | |
| | |
| | |
| | |
| an -1 l bn_1 |
71
ay by
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Cascade form

¢ Note H(z) =
H(z 1 — Zfﬁvzl apzk

¢ Consider the most general factorization when all coefficients are real
M _ M. _ .
2 (= frz DTL2 A =gz (1 —giz™h)

M= ) TTe2 (1 — diz=1) (1 — diz—1)
\ )\ J

Real poles and zeros  Conjugate pairs of poles and zeros

H(z)=A

¢ Combine pairs of real factors and complex conjugate pairs into 2"-order
factors

H bok + bz ™" + bopz™? Can efficiently implement

P 1 —aipz™! — agpz=2 2"d-order subsystems

POSTECH g



Cascade form

¢ Example of 6-th order system

wy [n] yi[n] wy[n] y2[n] ws[n] y3[n]
by boo bos
x[n] | vz A | V71 | | vz | y|n]
ayy by ay bis ap b3
O————0 O——{—>—0 O——{—>—
vz vz yz!
ar by, ) by, ars by
- O - 3 O - - O -

4 Many ways to combine pairs of poles and zeros with the same overall
system function with infinite precision

+ With finite precision, the results can be quite different
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Parallel form

¢ Using partial fraction expansion

i ok eor + e1pzt
_ ok 1 €1k
=D Ot )y T
— a1zt — a2
k=0 k=1 Lk 2k
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Parallel form

1422714 22

example

® H(z) =
&) = T 05T 1 01252

Yoo

x[n]

y[n]

-0.125
L «——O
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x|[n]

y[n]
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Transposed forms

¢ Reverse the directions of all branches in the network
¢ Keep functions on branches (multiplications, delays, etc) the same

¢ Reverse the input and output
=>» Obtain the same system!

¢ Simple example H(z) =

1—az!

O = - O - 0 O - — 9, - O O 3
x|[n] v[n] y[n] x[n] x[n]

z‘l Z i

a a a

(a) (b) (c)
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Structures for FIR systems

¢ FIR system functions have only zeros (except for poles at z=0)

¢ The difference equation reduces to

0 otherwise

" =0,1,.... M
h[n]—{b n=>0
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Direct form

& Direct form

7 z z
O—> 0 > O > O—p——————0 -
x[n]
Y 1[0] YA[1] Yh[2] Yh[M=1] Yh[M]
S - Y SRRV PP P | > o > o)
yln]
& Transposed direct form
71 71 7! 7]
o, - O - O — — — — — > O > O > O
yln]
Ah[M] An[M-1] Ah[M-=2]  AhK[2) A (1] Ah[0]
o——0 O > o> ——————0 > o

x[n]
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Course at glance

Discrete-time
signals and systems

/ \

[ Discrete-time signals ] [ Discrete-time systems
Fourier-domain Sampling and [ : /\Fllterdeﬂ | ]
representation reconstruction tructure 8

/\ [ Analysis ]

[ z-transform ] [ DFT/FFT ]
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Discrete Fourier Transform (DFT)

¢ Both time-domain sequence z[n| and its DFT X [k] are discrete sequences
=>» Appropriate for digital processing

¢ The complexity of direct computations

N—1
X[kl = > an]Wy", 0<k<N-1
n=0
1 N—-1
x[n]:N XKWy 0<n<N-1
k=0

proportional to N?
=>» May not be feasible for large N

POSTE2LCH 16



Complexity of direct DFT

¢ x[n] is complex sequence in general

¢ To compute DFT

Xk] = Z_:a:[n]Wk” = Z_: [(Re{x[n]}Re{Wﬁ” — Im{x[n] Hm{W"})

+ j(Re{z[n]Mm{W™} — Im{xz[n]}Re{W " )] ., 0<kE<N-1

+ Each component of X[k] requires N complex (4N real) multiplications
and (N-1) complex ((4N-2) real) additions
= X[k] requires N complex multiplications and N (N — 1) complex additions
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How to reduce complexity?

¢ Note WJ@(N_R) — Wﬁk” = (Wﬁ”)*

¢ Grouping
Re{z[n]}Re{W}"} + Re{z[N — n]}Re{Wi ¥ ™}
= (Re{z[n]} + Re{z[N — n]})Re{Wy"

— Im{z[n]Hm{W§"} — Tm{z[N — ] m{WEN ="}
= —(Im{x[n]} — Im{a[N — ]} Im{W}"

=>» Number of multiplications can be reduced by approximately a factor of 2
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Fast Fourier Transform (FFT)

¢ A class of algorithms for efficient computation of DFT
¢ Computation proportional to N log, N
¢ FFT algorithms not applicable for all values of N

¢ In general, FFT works for N = 2" for arbitrary positive integer v
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Complexity comparison

Figure 9.26 Number of floating-point operations as a function of N for MATLAB fft { ) function (revision 5.2).

x 10° Number of FLOPS for MATLAB FFT Function

Number of FLOPS

, 6N logo N

0 | 50 100 150 200 250
Transform length N
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Course at glance

Discrete-time
signals and systems

/ \

[ Discrete-time signals ] [ Discrete-time systems
Fourier-domain Sampling and [ : /\Fllterdeﬂ | ]
representation reconstruction tructure 8

/\ [ Analysis ]

[ z-transform ] [ DFT/FFT ]
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LTI System Analysis
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Review of transformations

¢ LTI system in time-domain

yn| = x[n] * hin] = Z z[nlh[n — k|

k=—o00

¢ LTI system in frequency-domain

Y (e!¥) = H(e?) X (&%)

¢ LTI system with z-transform

Y(2) = H(2)X(2)

POSTE2LCH

X (&) = Z z[n]e "
X(z) = Z x[n|z™"
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Magnitude and phase of output

¢ Fourier transform is in general a complex number
H(e™) = Hp(e’*) + jH(e'*)
= [H (e7)]ed
¢ Magnitude and phase of the Fourier transforms of system input and output
YV (&) = [H(e?)] - [X ()]
LY (e2%) = LZH(eY) + £X (&%)
|H(e’*)| : magnitude response or gain

/H(e’™) : phase response or phase shift
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Effect on magnitude and phase

& The effects | | |
Y (e’*)| = |H ()] [X ()]

LY (e2¥) = LH(e7Y) + £X (e?¥)

may or may not be desirable

¢ For undesirable effects, often refer to the effects as magnitude and phase
distortions
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Phase of general complex numbers

¢ Phase is not uniquely defined
+ Period of 27

# Denote the principal value of the phase of H(e’*)

—7m < ARG[H(&¥)] < 7

¢ General angle notation

LH (') = arg[H(e’*)] = ARG[H (&7¥)] + 27r(w)

\

Arbitrary integer that may depend on w
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Discontinuity of principal value of phase

arg[H(e!®

”\»unwrapped continuous phase

|
T 0]

27 -

37 |-

(a)

ARGH(E) — wrapped continuous phase
T \/\\_/ N~/
il \ e /ﬁ a

(b)

r(e)
A
1_

1
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Group delay

@ The group delay is defined as

() = grd[H ()] =~ {aral H(e™)]}

& Using other angles ARG[H (e7“)], ZH(€’*) also possible

+ Need to take possible discontinuities into account
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Example of ideal delay system

¢ Impulse response
hig|n] = é[n — ng]

¢ Frequency response

Hiq(e?¥) = e Iwma

4 Magnitude and phase responses
[Hia(e’*)] =1

LHig (7)) = —wng, |w| <7

Phase response linear with frequency
rPOSTE2LCH 29



Delay distortion and phase distortion

¢ In general, phase distortion is nonlinear with frequency

¢ Delay distortion (i.e., linear phase distortion) is rather a mild phase distortion

+ Can be compensated easily

€ When designing filters or other LTI systems, frequently accept a linear-phase
response (while zero-phase response is ideal)

POSTE2LCH
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Lowpass filter example

¢ ldeal lowpass filter with zero delay

1, w| < we
0, we < lw| <

Hlp(ejw) — {
Sin w.n
hipn] = —, —00<n<0
™

¢ Ideal lowpass filter with delay

Hlp(ejw) = {

e~ Jwnd, w| < we

0, Wc<|w|§7r

sinwe(n — nyg)

hipn] = rn—ny) — 00 < n < 0o

POSTE2LCH
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Narrowband input

& Assume X (e’%) is a narrowband signal, i.e., z[n] = s[n] cos(won)
+ X (e’*) is nonzero only around w = wy

¢ The effect of the phase of the system can be linearly approximated as
arg[H (e’¥)] ~ —¢pg — wny
Constant term Group delay

¢ Consider wideband signal as a superposition of narrowband signals

+ Constant group delay with frequency =» each narrowband component will
undergo identical delay

+ Nonconstant group delay =» result in time dispersion
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Imaginary Part

POSTE2LCH

¢ Consider the system with pole-zero plot

1 E
0.8}
0.6}
0.4}
0.2}

OF
~0.2}
—0.4}
~0.6}

Effects of group delay and attenuation

Figure 5.2 Pole-zero plot for the filter in the example of Section 5.1.2. (The number 2 indicates double-order poles

0
Real Part




Phase response

POS TP

4 1

ARG[H(eiv)]

6l T

=0.67

=047 =02« 0 027 04w

i)

(a) Principle Value of Phase Response

40
20
0

arg[H(e/«)]

0.7 -0.2x 0 027 0.4

w
(b) Unwrapped Phase Response

0.6

0.8
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Group delay and magnitude response

2”“ ! ! T : T T T ! T
150
3
E. 100
I
3 50
=111
1]
=50
-7 087 =067 -047 -027 0 0.27 047 067 087 T
(1)
(a) Group delay of H(z)
2-5 ] T

\H(eje)|

-7 =087 =067 =047 =027 0 027 047 06w 087w

w

pDSTEE‘ (h) Magnilude of Fruquency Respunse
J
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Input sequence

0.87 frequency* o

POS TR

IX(eiw)l

1

0.5

=0.5

b

0.27 frequency

W’/DAW frequency 1
1 |

—1 | | i i
0 50 100 150 200 250 300
Sample number (n)
(a) Waveform of signal x[n]

2(' T T T T T T T T T

) [ — ﬁ ......... ................................... ﬁ ........ ; SECTERLLE ......... ﬂ ........ -
O S 1 N | N S N | | - -

3 ... d..... S ke

LA TV WA

-7 =087 =067 =047 =027 0 02w 0.4 0.6 0.8 ]

@
(b) Magnitude of DTFT of x[n]
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Output sequence

Waveform of signal y[n]

2 . ; . |
0.4 £ l 0.27 frequency
Am frequency
i / y
\ |
0 _— e s
41 ‘ ‘ /v _
9 !

0 50 100 150 200 250 300
Sample number ()
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Review from Previous Lectures
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z-transform for difference equations

¢ z-transform is particularly useful for LTE systems with difference equations
N /. My
k k
= — — —k — —k
ol == (%) o=k + Y () ol
¢ Due to linearity and time-shift properties

Y(2) = — i (Z—’;) RY (2) + f: (Z—’;) RX(2)

k=1

POSTE2LCH 39



Example

13
¢ Let y[n| = 1

¢ z-transform gives

—yln —1] -

3
4

Y (z) = %z_lY(z) _ Zz_2Y(z) +X(2)
_Y(z) 1
H(z) = X(z) 1- %z‘l — %Z_Q

22—y 3 (2-1)(2-3)
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Example

¢ Using partial fraction expansion

lz_|_12z
lz—3 11z2-3

¢ Three possibilities for ROC

+||<1
Z N
4

1
+ Z<|Z|<3

+ |z| >3
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Example

0|f||<1
SN

¢ Impulse response becomes

hin] = % G) wen — 1] — 2 (3) ul—n — 1]

¢ Causal? No! Left-sided sequence

¢ BIBO stable? No! lim |h[n|| = o0

n——oo
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Example

1
¢ If Z<]z\<3

¢ Impulse response becomes

hin] = —% (i) ufn] — %(S)RU[—n )

¢ Causal? No! Two-sided sequence

O

¢ BIBO stable?Yes! > |h[n]| < oc

nN——oco
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Example

® If |z >3

¢ Impulse response becomes

hin] = —11—1 G) uln] + %(3)%[@

& Causal? Yes!

¢ BIBO stable? No!

POSTE2LCH 44



Stability and causality

# Stability requires ROC to include unit circle |z| =1
+ Proof using triangle inequality |a + b| < |a| + |b|

2| =1
H(z)| < Y |kl = Y [rn]l]z ™= Y |hn] < oo
n=—oo n=—oo \nz—oo ' |
¢ Causality requires ROC to satisfy [2| > [pn For BIBO stability

Largest pole
¢ If the system to be stable AND causal
> pn| <1

=>» All poles must be located within unit circle

POSTE2LCH
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New Concepts
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Inverse systems

1

¢ Definition: H;(z) =

¢ Time-domain condition: h[n| x h;[n] = d[n]

. 1
¢ Frequency response of inverse system (if it exists): H;(e’%) = H (%)
e w

+ Not all systems have an inverse

* Ideal lowpass filter does not have an inverse
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Inverse with rational form

¢ Consider

) — bo Hiil(l—ckz_l)
H() (ao> [T, (1 —dpz1)

+ Zeros at z = c¢j, and poles at z = dj, with possible zeros and/or poles at

z=0and z =

N —1

ago H = (1 — dy2 )

¢ Inverse H;(z) = (b()) Hlf\Jl(l —cpz 1)
k=1

=>» The poles (zeros) of H;(z) are the zeros (poles) of H(z)
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Pole/zeros relation

¢ The time-domain condition h[n] % h;[n| = §|n] states ROCs of H(z) and
H;(z) should overlap

& For causal H(z),ROC is |z| > max ||

¢ Any appropriate ROC for H;(z) that overlaps with |z| > max dy| is a
valid ROC for H;(z)

POSTE2LCH
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Example |

_ ~1
¢ let H(z2) = 1= 0.52 with ROC |z| > 0.9
1—-0.9z"1
1—0.9271
¢ Thei b Hi(z) =
e inverse becomes H;(z) 05,1

+ Two possible ROCs
+ Only |z| > 0.5 overlaps with |2| > 0.9

¢ Impulse response with proper ROC becomes

hi[n] = (0.5)"u[n] — 0.9(0.5)" tu[n — 1]

+ The inverse system both causal and stable
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Example 2

21 —05

o With ROC |2] > 0.9
J— . Z—

® let H(z)=

1-0.9271 —2+1.8z71
¢ The inverse becomes H;(z) = — (Z) 5T il 5 _Zl
+ Two possible ROCs © . )

+ Both regions overlap with |z| > 0.9

4 Possible impulse responses
hii[n] = 2(2)"u[—n — 1] — 1.8(2)" 'u[—n] with ROC |z| < 2
» Stable, noncausal
hio[n] = —2(2)"u[n] + 1.8(2)" tu[n — 1] with ROC |z| > 2

» Unstable, causal
rPOSTLE2PLCH 51



Generalization of inverse system

¢ If causal H(z) has zeros at ¢,k = 1,..., M, its inverse will be causal iff

the ROC is

12| > m’?x|ck\

¢ If the inverse H;(z) to be stable, the ROC of H;(z)must include unit circle
max lck| < 1

=> All the zeros of H (z) must be inside unit circle

¢ If both poles and zeros of H(z) are inside unit circle
=> Both H(z) and its inverse H;(z) are causal and stable
=>» Referred to as minimum-phase systems (will be discussed shortly)
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Homework

& Problems in textbook:5.29,5.46, 5.48

¢ MATLAB problem
+ Write a program to plot Figs. 5.2-5.6 in the textbook Section 5.1.2.
+ Due: 12/11 (Tuesday)
+ Send one m file (with proper annotations) that plots all figures at once

+ Please use the same step sizes for x- and y-axes!!!
* Otherwise, -0.5 point per plot
* A gain scaler is missing in the equation (5.15).
— In Fig. 5.4(b), [H(e*{jw}|=1 when w=0 while the equation (5.15) does not give this result.

— Please have a proper scaler to have the same figure as in Fig. 5.4(b).
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