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Signal Flow Graph Representation



Signal flow graph with z-transformation

 Consider the graph
 Not a direct form 
 Cannot obtain H(z) by inspection
 How to obtain H(z)?

 Each node is
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Difficult to solve due to delay
Use z-transform!



Signal flow graph with z-transformation

 z-transform equations

 After removing some variables
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Basic structure for IIR systems

 Similar to block-diagram representation, there can be various ways to 
represent a system using signal flow graph
 Direct form I
 Direct form II (canonic direct form)
 Cascade form
 Parallel form
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Direct form I

 Consider 
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Direct form II

 Consider 
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Cascade form

 Note

 Consider the most general factorization when all coefficients are real

 Combine pairs of real factors and complex conjugate pairs into 2nd-order 
factors
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Real poles and zeros Conjugate pairs of poles and zeros

Can efficiently implement 
2nd-order subsystems



Cascade form

 Example of 6-th order system

 Many ways to combine pairs of poles and zeros with the same overall 
system function with infinite precision
 With finite precision, the results can be quite different
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Parallel form

 Using partial fraction expansion
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Parallel form example


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Transposed forms

 Reverse the directions of all branches in the network
 Keep functions on branches (multiplications, delays, etc) the same
 Reverse the input and output
 Obtain the same system!

 Simple example
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Structures for FIR systems

 FIR system functions have only zeros (except for poles at z=0)

 The difference equation reduces to 

with the impulse response
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Direct form

 Direct form

 Transposed direct form
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Course at glance
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Discrete-time signals

Fourier-domain 
representation

Sampling and 
reconstruction

z-transform DFT/FFT

Discrete-time systems

Discrete-time 
signals and systems

Structure

Analysis

Filter design



Discrete Fourier Transform (DFT)

 Both time-domain sequence         and its DFT         are discrete sequences
Appropriate for digital processing

 The complexity of direct computations 

proportional to
 May not be feasible for large N
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Complexity of direct DFT

 x[n] is complex sequence in general

 To compute DFT

 Each component of X[k] requires N complex (4N real) multiplications 
and (N-1) complex ((4N-2) real) additions
 X[k] requires        complex multiplications and                   complex additions
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How to reduce complexity?

 Note

 Grouping

 Number of multiplications can be reduced by approximately a factor of 2
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Fast Fourier Transform (FFT)

 A class of algorithms for efficient computation of DFT

 Computation proportional to

 FFT algorithms not applicable for all values of N

 In general, FFT works for              for arbitrary positive integer
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Complexity comparison
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Course at glance
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Discrete-time signals

Fourier-domain 
representation

Sampling and 
reconstruction

z-transform DFT/FFT

Discrete-time systems

Discrete-time 
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LTI System Analysis



Review of transformations

 LTI system in time-domain

 LTI system in frequency-domain

 LTI system with z-transform
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Magnitude and phase of output

 Fourier transform is in general a complex number

 Magnitude and phase of the Fourier transforms of system input and output
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Effect on magnitude and phase

 The effects

may or may not be desirable

 For undesirable effects, often refer to the effects as magnitude and phase 
distortions
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Phase of general complex numbers 

 Phase is not uniquely defined
 Period of

 Denote the principal value of the phase of 

 General angle notation 
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Arbitrary integer that may depend on 



Discontinuity of principal value of phase
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unwrapped continuous phase

wrapped continuous phase



Group delay

 The group delay is defined as

 Using other angles                                        also possible
 Need to take possible discontinuities into account 
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Example of ideal delay system

 Impulse response

 Frequency response

 Magnitude and phase responses

29

Phase response linear with frequency



Delay distortion and phase distortion

 In general, phase distortion is nonlinear with frequency

 Delay distortion (i.e., linear phase distortion) is rather a mild phase distortion
 Can be compensated easily

 When designing filters or other LTI systems, frequently accept a linear-phase 
response (while zero-phase response is ideal)
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Lowpass filter example

 Ideal lowpass filter with zero delay

 Ideal lowpass filter with delay
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Zeros to 
make it causal



Narrowband input

 Assume              is a narrowband signal, i.e., 
 is nonzero only around

 The effect of the phase of the system can be linearly approximated as

 Consider wideband signal as a superposition of narrowband signals
 Constant group delay with frequency  each narrowband component will 

undergo identical delay
 Nonconstant group delay  result in time dispersion
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Constant term Group delay



Effects of group delay and attenuation

 Consider the system with pole-zero plot
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Phase response
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Group delay and magnitude response
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Input sequence
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Output sequence
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Review from Previous Lectures
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z-transform for difference equations

 z-transform is particularly useful for LTE systems with difference equations

 Due to linearity and time-shift properties
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Example

 Let

 z-transform gives
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Example

 Using partial fraction expansion

 Three possibilities for ROC






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Example

 If 

 Impulse response becomes

 Causal? No! Left-sided sequence

 BIBO stable? No!
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Example

 If

 Impulse response becomes

 Causal? No! Two-sided sequence

 BIBO stable? Yes!
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Example

 If

 Impulse response becomes

 Causal? Yes!

 BIBO stable? No!
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Stability and causality

 Stability requires ROC to include unit circle
 Proof using triangle inequality

 Causality requires ROC to satisfy

 If the system to be stable AND causal

All poles must be located within unit circle
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For BIBO stability

Largest pole



New Concepts
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Inverse systems

 Definition:

 Time-domain condition:

 Frequency response of inverse system (if it exists):
 Not all systems have an inverse

• Ideal lowpass filter does not have an inverse
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Inverse with rational form

 Consider

 Zeros at              and poles at             with possible zeros and/or poles at

 Inverse

The poles (zeros) of           are the zeros (poles) of 
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Pole/zeros relation

 The time-domain condition                              states ROCs of          and
should overlap

 For causal         , ROC is

 Any appropriate ROC for           that overlaps with                        is a 
valid ROC for     
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Example 1

 Let                                  with ROC

 The inverse becomes
 Two possible ROCs
 Only                 overlaps with

 Impulse response with proper ROC becomes

 The inverse system both causal and stable 
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Example 2

 Let                                  with ROC

 The inverse becomes
 Two possible ROCs
 Both regions overlap with

 Possible impulse responses
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Stable, noncausal

Unstable, causal



Generalization of inverse system

 If causal           has zeros at                          , its inverse will be causal iff
the ROC is

 If the inverse           to be stable, the ROC of          must include unit circle

All the zeros of          must be inside unit circle

 If both poles and zeros of          are inside unit circle
 Both          and its inverse           are causal and stable
 Referred to as minimum-phase systems (will be discussed shortly) 
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Homework

 Problems in textbook: 5.29, 5.46, 5.48

 MATLAB problem
 Write a program to plot Figs. 5.2-5.6 in the textbook Section 5.1.2.
 Due: 12/11 (Tuesday)
 Send one m file (with proper annotations) that plots all figures at once
 Please use the same step sizes for x- and y-axes!!! 

• Otherwise, -0.5 point per plot
• A gain scaler is missing in the equation (5.15).

– In Fig. 5.4(b), |H(e^{jw}|=1 when w=0 while the equation (5.15) does not give this result.
– Please have a proper scaler to have the same figure as in Fig. 5.4(b).
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