

Digital Signal Processing

POSTECH

Department of Electrical Engineering Junil Choi

Signal Flow Graph Representation

Signal flow graph with z-transformation

- Consider the graph
 - → Not a direct form
 - → Cannot obtain H(z) by inspection
 - + How to obtain H(z)?

lack lack Each node is $w_1[n]=w_4[n]-x[n]$ $w_2[n]=lpha w_1[n]$ $w_3[n]=w_2[n]+x[n]$ $w_4[n]=w_3[n-1]$

 $y[n] = w_2[n] + w_4[n]$

Difficult to solve due to delay Use z-transform!

Signal flow graph with z-transformation

$$lack$$
 z-transform equations $W_1(z)=W_4(z)-X(z)$ $W_2(z)=lpha W_1(z)$ $W_3(z)=W_2(z)+X(z)$ $W_4(z)=z^{-1}W_3(z)$ $Y(z)=W_2(z)+W_4(z)$

After removing some variables

$$W_{2}(z) = \alpha(W_{4}(z) - X(z))$$

$$W_{4}(z) = z^{-1}(W_{2}(z) + X(z))$$

$$Y(z) = W_{2}(z) + W_{4}(z)$$

$$W_{2}(z) = \frac{\alpha(z^{-1} - 1)}{1 - \alpha z^{-1}}X(z)$$

$$W_{4}(z) = \frac{z^{-1}(1 - \alpha)}{1 - \alpha z^{-1}}X(z)$$

$$W_2(z) = \frac{\alpha(z^{-1} - 1)}{1 - \alpha z^{-1}} X(z)$$

$$W_4(z) = \frac{z^{-1}(1-\alpha)}{1-\alpha z^{-1}}X(z)$$

Basic structure for IIR systems

- Similar to block-diagram representation, there can be various ways to represent a system using signal flow graph
 - Direct form I
 - → Direct form II (canonic direct form)
 - → Cascade form
 - → Parallel form

Direct form I

 $\bullet \ \ \operatorname{Consider} y[n] = \sum_{k=1}^N a_k y[n-k] + \sum_{k=0}^M b_k x[n-k]$

Direct form II

• Consider $y[n] = \sum_{k=1}^{N} a_k y[n-k] + \sum_{k=0}^{M} b_k x[n-k]$

Cascade form

- Note $H(z) = \frac{\sum_{k=0}^{M} b_k z^{-k}}{1 \sum_{k=0}^{N} a_k z^{-k}}$
- Consider the most general factorization when all coefficients are real

$$H(z) = A \frac{\prod_{k=1}^{M_1} (1 - f_k z^{-1}) \prod_{k=1}^{M_2} (1 - g_k z^{-1}) (1 - g_k^* z^{-1})}{\prod_{k=1}^{N_1} (1 - c_k z^{-1}) \prod_{k=1}^{N_2} (1 - d_k z^{-1}) (1 - d_k^* z^{-1})}$$
 Real poles and zeros Conjugate pairs of poles and zeros

Combine pairs of real factors and complex conjugate pairs into 2nd-order factors

$$H(z) = \prod_{k=1}^{N_s} \frac{b_{0k} + b_{1k}z^{-1} + b_{2k}z^{-2}}{1 - a_{1k}z^{-1} - a_{2k}z^{-2}} \longrightarrow \text{Can efficiently implement}$$
2nd-order subsystems

Cascade form

Example of 6-th order system

- Many ways to combine pairs of poles and zeros with the same overall system function with infinite precision
 - → With finite precision, the results can be quite different

Parallel form

Using partial fraction expansion

$$H(z) = \sum_{k=0}^{N_p} C_k z^{-k} + \sum_{k=1}^{N_1} \frac{A_k}{1 - c_k z^{-1}} + \sum_{k=1}^{N_2} \frac{B_k (1 - e_k z^{-1})}{(1 - d_k z^{-1})(1 - d_k^* z^{-1})}$$

$$= \sum_{k=0}^{N_p} C_k z^{-k} + \sum_{k=1}^{N_s} \frac{e_{0k} + e_{1k} z^{-1}}{1 - a_{1k} z^{-1} - a_{2k} z^{-2}}$$

Parallel form example

Transposed forms

- Reverse the directions of all branches in the network
- ◆ Keep functions on branches (multiplications, delays, etc) the same
- Reverse the input and output
 - → Obtain the same system!
- Simple example $H(z) = \frac{1}{1 az^{-1}}$

Structures for FIR systems

- ◆ FIR system functions have only zeros (except for poles at z=0)
- ◆ The difference equation reduces to

$$y[n] = \sum_{k=0}^{M} b_k x[n-k]$$

with the impulse response

$$h[n] = \begin{cases} b_n & n = 0, 1, \dots, M \\ 0 & \text{otherwise} \end{cases}$$

Direct form

Direct form

Transposed direct form

Course at glance

Discrete Fourier Transform (DFT)

- lacktriangle Both time-domain sequence x[n] and its DFT X[k] are discrete sequences
 - → Appropriate for digital processing
- The complexity of direct computations

$$X[k] = \sum_{n=0}^{N-1} x[n]W_N^{kn}, \quad 0 \le k \le N-1$$

$$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] W_N^{-kn}, \quad 0 \le n \le N-1$$

proportional to N^2

 \rightarrow May not be feasible for large N

Complexity of direct DFT

- \bullet x[n] is complex sequence in general
- ◆ To compute DFT

$$X[k] = \sum_{n=0}^{N-1} x[n] W_N^{kn} = \sum_{n=0}^{N-1} \left[(\text{Re}\{x[n]\} \text{Re}\{W_N^{kn}\} - \text{Im}\{x[n]\} \text{Im}\{W_N^{kn}\}) + j(\text{Re}\{x[n]\} \text{Im}\{W_N^{kn}\} - \text{Im}\{x[n]\} \text{Re}\{W_N^{kn}\}) \right], \quad 0 \le k \le N-1$$

- → Each component of X[k] requires N complex (4N real) multiplications and (N-1) complex ((4N-2) real) additions
 - \rightarrow X[k] requires N^2 complex multiplications and N(N-1) complex additions

How to reduce complexity?

- $\bullet \quad \mathsf{Note} \ \ W_N^{k(N-n)} = W_N^{-kn} = (W_N^{kn})^*$
- Grouping

$$\operatorname{Re}\{x[n]\}\operatorname{Re}\{W_{N}^{kn}\} + \operatorname{Re}\{x[N-n]\}\operatorname{Re}\{W_{N}^{k(N-n)}\}$$

$$= (\operatorname{Re}\{x[n]\} + \operatorname{Re}\{x[N-n]\})\operatorname{Re}\{W_{N}^{kn}\}$$

$$- \operatorname{Im}\{x[n]\}\operatorname{Im}\{W_{N}^{kn}\} - \operatorname{Im}\{x[N-n]\}\operatorname{Im}\{W_{N}^{k(N-n)}\}$$

$$= -(\operatorname{Im}\{x[n]\} - \operatorname{Im}\{x[N-n]\})\operatorname{Im}\{W_{N}^{kn}\}$$

→ Number of multiplications can be reduced by approximately a factor of 2

Fast Fourier Transform (FFT)

- ◆ A class of algorithms for efficient computation of DFT
- lacktriangle Computation proportional to $N\log_2 N$
- lacktriangle FFT algorithms not applicable for all values of N
- lacktriangle In general, FFT works for $N=2^v$ for arbitrary positive integer v

Complexity comparison

Figure 9.26 Number of floating-point operations as a function of N for MATLAB fft () function (revision 5.2).

Course at glance

LTI System Analysis

Review of transformations

◆ LTI system in time-domain

$$y[n] = x[n] * h[n] = \sum_{k=-\infty}^{\infty} x[n]h[n-k]$$

LTI system in frequency-domain

$$Y(e^{j\omega}) = H(e^{j\omega})X(e^{j\omega})$$
 $X(e^{j\omega}) = \sum_{n=-\infty} x[n]e^{-j\omega n}$

LTI system with z-transform

$$Y(z) = H(z)X(z) X(z) = \sum_{n=-\infty}^{\infty} x[n]z^{-n}$$

Magnitude and phase of output

Fourier transform is in general a complex number

$$H(e^{j\omega}) = H_R(e^{j\omega}) + jH_I(e^{j\omega})$$
$$= |H(e^{j\omega})|e^{j\angle H(e^{j\omega})}$$

Magnitude and phase of the Fourier transforms of system input and output

$$|Y(e^{j\omega})| = |H(e^{j\omega})| \cdot |X(e^{j\omega})|$$
$$\angle Y(e^{j\omega}) = \angle H(e^{j\omega}) + \angle X(e^{j\omega})$$

 $|H(e^{j\omega})|$: magnitude response or gain

 $\angle H(e^{j\omega})$: phase response or phase shift

Effect on magnitude and phase

The effects

$$|Y(e^{j\omega})| = |H(e^{j\omega})| \cdot |X(e^{j\omega})|$$

$$\angle Y(e^{j\omega}) = \angle H(e^{j\omega}) + \angle X(e^{j\omega})$$

may or may not be desirable

 For undesirable effects, often refer to the effects as magnitude and phase distortions

Phase of general complex numbers

- Phase is not uniquely defined
 - \bullet Period of 2π
- Denote the principal value of the phase of $H(e^{j\omega})$

$$-\pi < ARG[H(e^{j\omega})] \le \pi$$

General angle notation

$$\angle H(e^{j\omega}) = \arg[H(e^{j\omega})] = \operatorname{ARG}[H(e^{j\omega})] + 2\pi r(\omega)$$

Arbitrary integer that may depend on ω

Discontinuity of principal value of phase

Group delay

◆ The group delay is defined as

$$\tau(\omega) = \operatorname{grd}[H(e^{j\omega})] = -\frac{d}{d\omega} \{ \operatorname{arg}[H(e^{j\omega})] \}$$

- lacktriangle Using other angles $ARG[H(e^{j\omega})],\ \angle H(e^{j\omega})$ also possible
 - → Need to take possible discontinuities into account

Example of ideal delay system

Impulse response

$$h_{\rm id}[n] = \delta[n - n_d]$$

Frequency response

$$H_{\rm id}(e^{j\omega}) = e^{-j\omega n_d}$$

Magnitude and phase responses

$$|H_{\rm id}(e^{j\omega})| = 1$$

 $\angle H_{\rm id}(e^{j\omega}) = -\omega n_d, \quad |\omega| < \pi$

Phase response linear with frequency

Delay distortion and phase distortion

- In general, phase distortion is nonlinear with frequency
- ◆ Delay distortion (i.e., linear phase distortion) is rather a mild phase distortion
 - → Can be compensated easily
- ◆ When designing filters or other LTI systems, frequently accept a linear-phase response (while zero-phase response is ideal)

Lowpass filter example

Ideal lowpass filter with zero delay

$$H_{\rm lp}(e^{j\omega}) = \begin{cases} 1, & |\omega| < \omega_c \\ 0, & \omega_c < |\omega| \le \pi \end{cases}$$

$$h_{\rm lp}[n] = \frac{\sin \omega_c n}{\pi n}, -\infty < n < \infty$$

Ideal lowpass filter with delay

$$H_{\rm lp}(e^{j\omega}) = \begin{cases} e^{-j\omega n_d}, & |\omega| < \omega_c \\ 0, & \omega_c < |\omega| \le \pi \end{cases}$$

$$h_{\rm lp}[n] = \frac{\sin \omega_c(n - n_d)}{\pi(n - n_d)}, \quad -\infty < n < \infty$$

Narrowband input

- Assume $X(e^{j\omega})$ is a narrowband signal, i.e., $x[n] = s[n] \cos(\omega_0 n)$
 - $\star X(e^{j\omega})$ is nonzero only around $\omega = \omega_0$
- ◆ The effect of the phase of the system can be linearly approximated as

$${
m arg}[H(e^{j\omega})] \simeq -\phi_0 - \omega n_d$$
 Constant term Group delay

- Consider wideband signal as a superposition of narrowband signals
 - → Constant group delay with frequency → each narrowband component will undergo identical delay
 - → Nonconstant group delay → result in time dispersion

Effects of group delay and attenuation

Consider the system with pole-zero plot

Figure 5.2 Pole-zero plot for the filter in the example of Section 5.1.2. (The number 2 indicates double-order poles and zeroes.)

Phase response

Group delay and magnitude response

Output sequence

Review from Previous Lectures

z-transform for difference equations

◆ z-transform is particularly useful for LTE systems with difference equations

$$y[n] = -\sum_{k=1}^{N} \left(\frac{a_k}{a_0}\right) y[n-k] + \sum_{k=0}^{M} \left(\frac{b_k}{a_0}\right) x[n-k]$$

Due to linearity and time-shift properties

$$Y(z) = -\sum_{k=1}^{N} \left(\frac{a_k}{a_0}\right) z^{-k} Y(z) + \sum_{k=0}^{M} \left(\frac{b_k}{a_0}\right) z^{-k} X(z)$$

$$Y(z) = \left(\frac{\sum_{k=0}^{M} b_k z^{-k}}{\sum_{k=0}^{N} a_k z^{-k}}\right) X(z)$$

$$H(z)!$$

• Let
$$y[n] = \frac{13}{4}y[n-1] - \frac{3}{4}y[n-2] + x[n]$$

z-transform gives

$$Y(z) = \frac{13}{4}z^{-1}Y(z) - \frac{3}{4}z^{-2}Y(z) + X(z)$$

$$H(z) = \frac{Y(z)}{X(z)} = \frac{1}{1 - \frac{13}{4}z^{-1} + \frac{3}{4}z^{-2}}$$
$$= \frac{z^2}{z^2 - \frac{13}{4}z + \frac{3}{4}} = \frac{z^2}{(z - \frac{1}{4})(z - 3)}$$

Using partial fraction expansion

$$H(z) = -\frac{1}{11} \frac{z}{z - \frac{1}{4}} + \frac{12}{11} \frac{z}{z - 3}$$

- ◆ Three possibilities for ROC
 - $+ |z| < \frac{1}{4}$
 - $+ \frac{1}{4} < |z| < 3$
 - + |z| > 3

- $\bullet \quad \text{If} \quad |z| < \frac{1}{4}$
- Impulse response becomes

$$h[n] = \frac{1}{11} \left(\frac{1}{4}\right)^n u[-n-1] - \frac{12}{11} (3)^n u[-n-1]$$

- Causal? No! Left-sided sequence
- BIBO stable? No! $\lim_{n \to -\infty} |h[n]| = \infty$

- If $\frac{1}{4} < |z| < 3$
- Impulse response becomes

$$h[n] = -\frac{1}{11} \left(\frac{1}{4}\right)^n u[n] - \frac{12}{11} (3)^n u[-n-1]$$

- Causal? No! Two-sided sequence
- lacktriangle BIBO stable? Yes! $\sum_{n=-\infty}^{\infty} |h[n]| < \infty$

- $\bullet \quad \text{If} \quad |z| > 3$
- ◆ Impulse response becomes

$$h[n] = -\frac{1}{11} \left(\frac{1}{4}\right)^n u[n] + \frac{12}{11} (3)^n u[n]$$

- ◆ Causal? Yes!
- BIBO stable? No!

Stability and causality

- lacktriangle Stability requires ROC to include unit circle |z|=1
 - lacktriangle Proof using triangle inequality $|a+b| \leq |a| + |b|$

$$|H(z)| \le \sum_{n=-\infty}^{\infty} \left| h[n]z^{-n} \right| = \sum_{n=-\infty}^{\infty} |h[n]| \left| z^{-n} \right| = \sum_{n=-\infty}^{\infty} |h[n]| < \infty$$

lacktriangle Causality requires ROC to satisfy $|z|>|p_N|$

For BIBO stability

Largest pole

- If the system to be stable AND causal
 - → $|p_N| < 1$
 - → All poles must be located within unit circle

New Concepts

Inverse systems

- Definition: $H_i(z) = \frac{1}{H(z)}$
- Time-domain condition: $h[n]*h_i[n] = \delta[n]$
- Frequency response of inverse system (if it exists): $H_i(e^{j\omega}) = \frac{1}{H(e^{j\omega})}$
 - → Not all systems have an inverse
 - Ideal lowpass filter does not have an inverse

Inverse with rational form

◆ Consider

$$H(z) = \left(\frac{b_0}{a_0}\right) \frac{\prod_{k=1}^{M} (1 - c_k z^{-1})}{\prod_{k=1}^{N} (1 - d_k z^{-1})}$$

- ullet Zeros at $z=c_k$ and poles at $z=d_k$ with possible zeros and/or poles at z=0 and $z=\infty$
- Inverse $H_i(z) = \left(\frac{a_0}{b_0}\right) \frac{\prod_{k=1}^{N} (1 d_k z^{-1})}{\prod_{k=1}^{M} (1 c_k z^{-1})}$
 - \rightarrow The poles (zeros) of $H_i(z)$ are the zeros (poles) of H(z)

Pole/zeros relation

- lacktriangle The time-domain condition $h[n]*h_i[n]=\delta[n]$ states ROCs of H(z) and $H_i(z)$ should overlap
- For causal H(z), ROC is $|z| > \max_k |d_k|$
- lacktriangle Any appropriate ROC for $H_i(z)$ that overlaps with $|z|>\max_k |d_k|$ is a valid ROC for $H_i(z)$

Example I

- Let $H(z) = \frac{1 0.5z^{-1}}{1 0.9z^{-1}}$ with ROC |z| > 0.9
- The inverse becomes $H_i(z) = \frac{1 0.9z^{-1}}{1 0.5z^{-1}}$
 - ★ Two possible ROCs
 - ullet Only |z| > 0.5 overlaps with |z| > 0.9
- ◆ Impulse response with proper ROC becomes

$$h_i[n] = (0.5)^n u[n] - 0.9(0.5)^{n-1} u[n-1]$$

→ The inverse system both causal and stable

- Let $H(z) = \frac{z^{-1} 0.5}{1 0.0z^{-1}}$ with ROC |z| > 0.9
- The inverse becomes $H_i(z) = \frac{1 0.9z^{-1}}{z^{-1} 0.5} = \frac{-2 + 1.8z^{-1}}{1 2z^{-1}}$
 - ★ Two possible ROCs
 - \bullet Both regions overlap with |z| > 0.9
- Possible impulse responses

$$h_{i1}[n] = 2(2)^n u[-n-1] - 1.8(2)^{n-1} u[-n]$$
 with ROC $|z| < 2$

Stable, noncausal

$$h_{i2}[n] = -2(2)^n u[n] + 1.8(2)^{n-1} u[n-1]$$
 with ROC $|z| > 2$

Unstable, causal

Generalization of inverse system

• If causal H(z) has zeros at $c_k, k=1,\ldots,M$, its inverse will be causal iff the ROC is

$$|z| > \max_{k} |c_k|$$

lacktriangle If the inverse $H_i(z)$ to be stable, the ROC of $H_i(z)$ must include unit circle

$$\max_{k} |c_k| < 1$$

- \rightarrow All the zeros of H(z) must be inside unit circle
- lacktriangle If both poles and zeros of H(z) are inside unit circle
 - \rightarrow Both H(z) and its inverse $H_i(z)$ are causal and stable
 - → Referred to as minimum-phase systems (will be discussed shortly)

Homework

- Problems in textbook: 5.29, 5.46, 5.48
- MATLAB problem
 - → Write a program to plot Figs. 5.2-5.6 in the textbook Section 5.1.2.
 - → Due: 12/11 (Tuesday)
 - → Send one m file (with proper annotations) that plots all figures at once
 - → Please use the same step sizes for x- and y-axes!!!
 - Otherwise, -0.5 point per plot
 - A gain scaler is missing in the equation (5.15).
 - In Fig. 5.4(b), $|H(e^{jw})| = 1$ when w=0 while the equation (5.15) does not give this result.
 - Please have a proper scaler to have the same figure as in Fig. 5.4(b).

