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Class information

¢ Lecturer information
+ Name: Junil Choi (Z|= ¥
+ Email: junil@postech.ac.kr
+ Office: LG 401
+ Office hours: Tuesday/Thursday 3:30pm-4:30pm

¢ TA information
+ Name: Hyeongtaek Lee (O| 2 Ef)
+ Email: htlee8459@postech.ac.kr
+ Office: LG 404
+ Office hours:TBD
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Class information

¢ Course materials
+ Go to https://www.icl.postech.ac.kr/
+ Sign in with your POSTECH email account
+ Go to Classes-EECE 451

4+ Download lecture slides

+ Will post homework as well
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Class information

¢ Textbook: Discrete-Time Signal Processing 3rd international ed.

¢ Grade percentages
+ A 30%
+ B 50%
+ C20%
+ Fis possible if

* the total score is below 10 out of 100

* you miss half of the regular courses (i.e., 10)

+ Every 5 absents results in grade degradation
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Class information

€ Evaluation
4+ MATLAB homework 15%

* Do not copy but you can get help from colleagues
— You should indicate on the hardcopy from whom you get help
— Full credit will be 7 out of 10
— Please! Be honest!!!

* Textbook homework will not be graded

4+ Quiz 15%
* Mostly the same problems from the textbook homework
* Around 5 quizzes

* Each quiz may have about 3 questions and last 30 minutes

4+ Midterm 30%
4+ Final exam 40%
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Course at glance

Discrete-time
signals and systems

/ \

[ Discrete-time signals ] [ Discrete-time systems
Fourier-domain Sampling and [ : /\Fllterdeﬂ | ]
representation reconstruction tructure 8

/\ [ Analysis ]

[ z-transform ] [ DFT/FFT ]
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What is signal?
BNV AV VAT

v

I‘ 32 ms “I

¢ Flow of information

¢ Mathematically, function of one or more independent variables
+ Time: speech

+ Position: image

¢ Commonly, call independent variable as time

+ Discrete-time signal processing techniques can be applied to all variables!
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Signals in practice

¢ All physical signals are basically analog (continuous, infinite precision)
+ Sound
+ Picture (not digital images such as JPEG)
+ Smell
+ Texture

¢ Need to process signals for various purposes
+ Blur image

4+ Increase bass sound in music

¢ Then, why digital processing, not analog?
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Digital signal processing (DSP)

DSP

Transducers Ahalog-to-digital converter

N

Physical signals Analog signjals Digital signals

U/

Output devices Digital-to-analog converter

¢ Representation, transformation and manipulation of digital signals and the
information the signals contain
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Analog signal processing vs. digital signal processing

¢ Flexibility
+ Digital processing >>>>>>>>>>>>>>>>>>>> Analog processing
+ Analog circuit is usually designed to perform a specific task
¢ Complexity
+ Digital circuit <<<< Analog circuit but processing may be similar
¢ Speed
+ Digital processing < Analog processing
+ Not a problem due to extremely powerful processors
¢ Precision
+ Digital processing < Analog processing

+ Digital processing also can have very high resolution
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DSP applications

L 4
L 4
L 4
L 4
L 4
L 4
L 4
L 4
L 4
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Communications
Radar

Image processing
Speech processing
Data storage
Medical imaging
Control

Financial engineering

And so much more!
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DSP History

¢ Prior to 1950’s: analog signal processing

+ Using electronic circuits or mechanical devices

¢ [950’s-1960’s: computer simulation before analog implementation

4+ Non-real time

¢ [965: Fast Fourier Transforms (FFTs) by Cooley and Tukey
+ Make real time DSP possible

¢ [980-present: IC technology boosting DSP
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Digital signal processing demos

¢ Sound processing

¢ Image processing on pixels

¢ Image processing in frequency domain
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Discrete-Time Signals
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Discrete-time signals

Infinite precision: discrete-time signals
Finite precision: digital signals

x[—l]ox-oJ
x[21. 1 | ex[ x[n
[.2], a2 7]
! [ ‘ ? o 78 91011
9 876-5432-1012345¢6¢% 1 e »n

Indexed by integers (treat as time)
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How to obtain discrete-time signals? Sampling!

A

32 ms

(a)

POSTE2LCH

Y

256 samples
(b)
What is the sampling rate of this signal?
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Do not get confused!

x[—l]ox-o]
x[21. 1 | ex[ x[n
[.2], a2 7]
! [ ‘ ? o 78 91011
9 876-5432-1012345¢6% 1 e »n

/

Values only defined in integer indices, i.e., [0.5] # 0.
x[0.5] is simply not defined at all.
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Basic discrete-time sequences

18
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Unit sample sequence

le
Unit sample

— e o o0 0090090 0000900000090
0 n

¢ The role similar to the unit impulse function in continuous-time signals

R

¢ Often called discrete-time impulse or simply impulse
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Important role of unit sample sequence

I p[n]
2 7

4 2 01 345618 n

ar a7

p[n] = a_3é[n + 3| + a16[n — 1] + azd[n — 2| + a7zd[n — 7]

¢ Any arbitrary sequence can be represented as unit sample sequence
o0

z[n] = ) z[k]d[n — k]
k=—o0 \

Memorize this form!
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Unit step sequence

I, n>0 &
4 u[n] = {0’ n < 0 = kzz_:ooa[k]\’ Why is this correct?

¢ Another interpretation of unit step sequence

uln] =6[n] +dn—1]+d6n—2]+---
225[11—/4:] -
k—0
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Exponential sequences

Real exponential

Hmhm

0 n

¢ General form: z[n] = Aa™

¢ If A and alpha are real, x[n] is real. In general, they are complex.

z[n] = Aa™ = |A
=|A
=|A

ej¢|a|"ej“’0”
|a|nej(won+¢)

|a|™ cos(won + @) + j|Al|a|™ sin(won + @)

¢ What will x[n] look like with |a| > 1, |a| < 1, |a] =12

POSTE2LCH

O<axl
A positive

a = |ale?™?

A=|Ale’?
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Sinusoidal sequences

Sinusoidal

Al
llll

[
¢ With |a| =1
z[n] = |Alef@onté) — |A@won + ¢) + j|A| sin(won + ¢)

n

Frequency Phase
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Combine basic sequences

¢ An exponential sequence that is 0 for n<0

Aa™, n>0
zln] =
0, n <0

= Aa"u[n]
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Properties of exponential and sinusoidal sequences

® Because n is always integer, with arbitrary integer r,
.CU[’I’L] — Aej(wo—|-27r'r)n — AejwonejZﬂ"r'n — Aejwon
z[n] = Acos[(wo + 277)n + ¢] = Acos(won + ¢)

- Complex exponential and sinusoidal sequences with frequencies (wo + 27r),
where r is an integer, are indistinguishable from one another.

¢ Periodicity Period
z[n| =z[n+ N|, foralln

+ For exponential sequence to be periodic, i.e., 790" = i@ ("+N) (o 5| ,
it is necessary and sufficient to have wgN = 27k

- e’ om may not be periodic depending on frequency wyg
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Periodicity examples

~

® z[n] = cos(mn/4) is periodic with period N=8

& z[n| = cos(3mn/8) is periodic with period N=16

¢ z[n| = cos(n) is not periodic at all

S [ S
-y

cos(won)

T O ot 11 TS
L 11
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Number of distinguishable frequencies

® lLet wi = 27Tk/N

CUO:O, w1 227T/N,--- , WN—-1 227T(N—1)/N, wN:27r

/

Same frequency in exponential sequences

@ There are N distinguishable frequencies that are periodic with period N

- Basic for discrete-time Fourier analysis later
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Discrete-Time Systems
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Definition of discrete-time system

¢ Transformation or operator that maps an input x[n] into an output y[n]

y[n] = T{z[n|}

Mathematical definition

POSTE2LCH

x[n]

Tie)

y[n]

Pictorial definition
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Examples of discrete-time systems

¢ The ideal delay system
yln] =xn —ng], —oo<n<oo

¢ Moving average 1 M,
n| = zin—k
yln M1+M2+1,€=Z_:M1 n — |
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Important properties of systems

¢ Memoryless systems

¢ Linear systems

¢ Time-invariant systems

¢ Causality

¢ Stability

POSTE2LCH
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Memoryless systems

¢ The output of y[n] at every value of n depends only on the input x[n] at
the same value of n

& Bxample: y[n] = (z[n])?, for allmn

¢ Examples of systems with memory

+ ldeal delay y[n] = z[n —ng], —oo<n < o0
1 Mz
4+ Moving average y|n| = z\n —k
g average y[n] M1+M2+1k;Ml [ ]

POSTE2LCH
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Linear systems

Additivity property
¢ A system is linear if and only if

T{z1[n] + z2[n|} = T{z1[n]} + T{z2[nl} = y1[n] + y2[n]
and

T{az[n|} = aT{z[n]} = ay[n]—— >caling property
(homogeneity)

where a is an arbitrary constant.

¢ Combined into superposition
T{azxi[n] + bx2[n]} = aT{z1|n]} + bT{x2[n|} = ayi|n] + byz|n]

for arbitrary constants a and b.
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Examples of linear systems

¢ |deal delay y[n] = z[n —ng|, —oo0<n < o0
1 Mz
& Moving average y[n] = zin—k
g average y|n| M1+M2+1k=z—:M1 n = k|

# What about squaring system y[n] = (z[n])?, for all n?

n

¢ What about accumulator y[n| = Z x[k]?

k=—o0
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Time-invariant systems

¢ Time shift of the input x[n] causes a corresponding shift in the output y[n]
¢ Let y[n] = T{x[n]}

If z1[n] = z[n — ng], then yi[n] = T{z1[n]} = y[n — ny] for all ngy

¢ Example: n
+ Accumulator y[n| = Z x[k] is time-invariant.

k=—o0

Proof: Compare y1[n] = T{x[n — ng4]} and y[n — ng]
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Causality

¢ For every choice of ng, the output sequence value at the index n = nyg
depends only on the input sequence values for n < ng

¢ Current output is a function of only past and present inputs, not future

inputs.

¢ Examples

+ Backward difference system is causal

POSTE2LCH

Yl

+ Forward difference system

yl

n.

=X

iS hon

n

=T

1| —z[n —1]

-causal

1+ 1] — z[n]
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Stability

¢ Many different definitions of ‘stability’ exist
¢ We focus on bounded-input bounded-output (BIBO) stability

¢ A system is BIBO stable iff every bounded input sequence produces a
bounded output sequence.

¢ Input is bounded if there exists a fixed positive finite value B, such that

|z[n]| < By < oo, foralln

With bounded input, there exists a fixed positive finite values B, such that
ly[n]| < B, < 00, foralln
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Stability examples

# Squaring system y[n] = (z[n])?, for all n is BIBO stable

¢ Accumulator y[n] = Z z[k] is not BIBO stable

k=—o0

Proof: Check with the input z[n| = u[n]
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Linear time-invariant (LTI) systems

¢ LTI systems have significant signal-processing applications

¢ Recall that the input sequence can be represented as

. - xn| = x|klon — k
Will call this jmpulse response [ ] kzz_:oo [ ] [ ] Work as constants
o Let hjn] = T{5[n]} w
¢ Output becomes y[n] = T{z[n]} =T { Z z|k|é[n — k]}
k=—o0 )Linear

_ Z z[k|T{é[n — k|}
k:o;oo )Time-invariant
= ) z[klh[n — k]

k=—oc0
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Discrete-time convolution

¢ Define the convolution sum operator

yln] = Y az[k]hln— k|

k=—o0
= xz[n] * h[n]
¢ Notational ambiguity -
yln — ng] = Z z[klh|n — ng — k|
k=—o0

= x[n] * h[n — ng)

# x[n — no| * hin — ng|] = y[n — 2ny
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Computing discrete-time convolution

€ There are several ways to compute discrete-time convolution

¢ |) Superposition of responses to individual samples of the input

it

-2 1] n -2 0 n

l x_sln] = x[-2]5[n + 2] v_aln] = x[-2}h[n + 2]

xoln] = x{0]8[n] ‘ ] yoln] = x{0}1[n]
0 " 0 2 n
xa[n] = x[3)8[n - 3] ya[n] = x[3}h[n -3]
3 3 5
0 l n 0 l J |

x[n] = x_a[n] + xp[n] + x3]n] ¥ln] = yoaln] + vpln] + valn]
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Computing discrete-time convolution

¢ 2) More systematical approach

+ Exploit h[n-k] + Step |:reverse h[k]
+ Step 2:delay h[k] by n samples, i.e., h[n-k]
‘ ‘ ‘ ‘ ] " + Step 3: For each output sample y[n], multiply x[k]
il L1 ; k and h[n-k], then sum the whole products

gy, { G Eamleil )
G LN
(b) i

X

k 4 n 0 k

holk] = hy[k —n) = h[n - k] = h[~(k - n)] [ i T yln]
| 1] [ ‘ ‘ ‘ ‘ |, H ||||Tmfm : II[H“HHIH k

n-(N-1)
= (b)
n-6 0 n n+3 k @
(c) i

POSTE2LCH 42



