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Course at glance
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Definition of filter

¢ Filter, in broader sense, covers any system

4+ Distortion environments are also filters

¢ We denote filters as controllable systems here
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Filter design process

¢ Three design steps

Performance

constraints

Problem

Specifications

Magnitude response

Phase response
Complexity

¢ Focus on lowpass filters

+ Can be generalized to other frequency-selective filters
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Example specifications

¢ Specifications for a discrete-time lowpass filter

1-0.01<|H()|<1+001, 0<w<w,

)] |H(e’¥)] <0.001, w > w,
1+,
7N
1_8P2 :\\ | 5p1 - 5p2 — 0-01
\
N 55 = 0.001
Passband : Transition : Stopband
! A
| N\
| N
5 | | N
| M~
0 wp W T
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Specifications of frequency response

¢ Typical lowpass filter specifications in terms of tolerable
+ Passband distortion = as smallest as possible
+ Stopband attenuation = as greatest as possible
+ Width of transition band =» as narrowest as possible

¢ Improving one often worsens others =» tradeoff exists

@ Increasing filter order may improve all = increase complexity
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Design a filter

¢ Design goal
=>» Find system function to make frequency response meet the
specifications (tolerances)

¢ Infinite impulse response (lIR) filter
+ Poles insider unit circle due to causality and stability

+ Rational function approximation

¢ Finite impulse response (FIR) filter
+ For filters with linear phase requirement

+ Polynomial approximation
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Example of IR filter design

¢ For rational (and stable and causal) system function

M _
H(z) = 2 =0 br? *
N —k
1- Ek:l Az

find the system coefficients such that the corresponding frequency response
H(e’) = H(2) | yeiw
provides a good approximation to a desired response

H(ejw) ~ Hdesired(ejw)
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lIR vs. FIR

¢ Either FIR or lIR is often dependent on the phase requirements

¢ Only FIR filter can be at the same time stable, causal and GLP

¢ Design principle
+ If GLP is required = FIR
+ If not =>» IIR preferable because IIR can meet specifications with lower complexity
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lIR vs. FIR

¢ IR ¢ FIR
+ Rational system function + Polynomial system function
+ Poles and zeros + Only zeros
+ Stable/unstable + Always stable
+ Hard to control phase + Easy to get (generalized) linear
+ Low order (4-20) phase
+ Designed on the basis of analog + High order (20-200)
filter + Usually unrelated to analog filter

designs
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lIR Filter Design
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Discrete-time lIR filters from continuous-time filters

¢ Continuous-time (or analog) IR filter design is highly advanced

+ Relatively simple closed-form design possible

¢ Discrete-time |IR filter design
+ Filter specifications for discrete-time filter
+ Convert to continuous-time specifications
+ Design continuous-time filter

+ Convert to discrete-time filter
* Impulse invariance method

* Bilinear transformation method
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Analog filter designs

¢ Butterworth filter

¢ Type | Chebyshev filter
¢ Type ll Chebyshev filter
¢ Elliptic filter

POSTE2LCH
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Butterworth lowpass filter

1
(2/92)N

& Filter form |H.(GQ)|? = T
+ Two parameters

* Order N
e Cutoff frequency €1,

+ Monotonic in both passband and stopband

|H ()]

14
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Type | Chebyshev lowpass filter

1
i H.(jQ)|? =
@ Filter form |H:(j€?)] 1—|—62V]%(Q/QC)

where Vy(z) = cos(N cos™* z)
+ Three parameters

* Order N
¢ Cutoff frequency €2,

H.(j&2)
* Allowable passband ripple €

& |H:(j)|* has equi-ripple error
in passband and monotonic in
stopband
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Type Il Chebyshev lowpass filter
1
2 _

¢ Fitter form |Hc(jQ)" = 1— [€2VR(2/Q)] 71

¢ Similar to Type | Chebyshev lowpass filter
+ |H.(j9)|* now has equi-ripple error in stopband and flat in passband
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Elliptic filter

9 1
1+ €2U%(Q)

# Filter form |H.(jQ)|

where Uy (€2) is a Jacobian elliptic function

® |H.(5)|? has equi-ripples in
both passband and stopband
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Discrete-time IR filter design — impulse invariance

¢ Recall “discrete-time processing of continuous-time signals” in Section 4.4

x(1)

e e o o o — — — — — — — — — — — — — — — — — — — — — — — — — — —

H(jQ) = H.(jQ)
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Continuous-time
LTI system
h.(t), H.(jQ)

(a)

Discrete-time
LTI system
h{n], H(e')

(b)
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Output signal

¢ Necessary conditions
+ The discrete-time system is LTl
+ Continuous-time signal Z.(t) is bandlimited
+ Sampling rate {2, is at or above the Nyquist rate 2{2

¢ If all conditions are satisfied, the output signal becomes
Yr(59) = Her (72) X (7€) Cutoff frequency of

. ideal lowpass filter
H(e9T), |9 < w{v P
0, Q| > /T

where

Heff(jﬂ) - {

w =T
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Impulse invariance

H (79T, Q| < w/T

¢ Recall Heg(j2) = {0 Q| > «/T

¢ We want to have Heg(j2) = H.(j2)

» H(e™) = H,(jw/T), |w| <

oy 1§ (@ _ 2k

¢ In time-domain: h[n] = Th.(nT) e )—TkZZ_OOXc (J (T T ))

: 1 & w 27k

jwy — N Bt

H(e™) =T > Hc(](T T))
fo=—00 Because H.(5Q) =0, |Q| > «/T
W
= H, (]T) , |w|l <7

Only true when the filter is bandlimited
rPOSTE2LCH 20



Impulse invariance - aliasing

¢ If the analog filter is not bandlimited (typically the case in practice)
=>» Aliasing occurs in the discrete-time filter

+ Impulse invariance not appropriate for designing highpass filters

. W
H"'(] Td)
/\
w
H(e-f‘”)
—— =St~ =
o SN 7 RN d RN
o> \>/ \> \\
_e"// L.g’/ \\"-—-_z’/ \\--J \\--._
21 2T w
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How can we avoid the aliasing?

¢ Consider higher sampling frequency for analog filter Qs = 1/T
¢ Will this work? No!

+ Filter specifications given from discrete-time filter requirements

+ The specifications transformed to continuous-time by 2 = w /T

+ Continuous-time filter designed by continuous-time specifications

+ Final discrete-time filter obtained by impulse invariance method (sampling) «——

- 5 m((5-5)

k=—o0

=> Effect of 25 = 1/T cancels out

¢ Aliasing can be avoided by overdesigning analog filter
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Interpretation using system functions

¢ Transformation from continuous-time system to discrete-time system is
easy to carry out using system functions

¢ After partial fraction expansion

N hin] = Tyhe(nTy)
Ak dltc d
Hc(s) — Z 5 — s / N
k=1 — ZTdAkeS’“anu[n]
N skt
Zk:l Ake k ’ t Z 0 k=1
hC(t) —
0, t<0 N
— ZTdAk(es"’Td)nu[n]

N

k=
z TaAg
H(Z) — Z 1 — eSdez—l
k=1

POSTE2LCH 23




Interpretation using system functions

¢ Mapping from H.(s) to H(z)
+ Pole of Hc(8) at s = s3, maps to pole of H(2) at z = e
=> Stability and causality preserved
+ Continuous-time: Re{sx} < 0
+ Discrete-time: z = e¢**74 inside the unit circle

skla
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Impulse invariance with Butterworth filter

# Specifications: 0.89125 < |H(e’*)| <1, 0< |w| <0.27
|H(e?%)] < 0.17783, 0.37 < |w| <7

¢ Since the effect Q5 = 1/T cancels out,set T=1 and w = 2

¢ Transformed analog specifications
0.89125 < |H.(jN)| <1, 0<(|Q| <027
|H.(j)] < 0.17783, 037 <|Q| <7

4 Due to monotonicity of Butterworth filter
|H.(j0.27)| > 0.89125

|H.(50.3m)| < 017783

25
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Impulse invariance with Butterworth filter

¢ The magnitude-squared function of Butterworth filter
1
1+ (Q/Qc)N

¢ From the specifications |H.(j0.27)| > 0.89125, |H.(j0.37)| < 017783

L4 (02 N1y Lo (037 N1\
0, - \0.89125 ) ’ 0, -~ \0.17783

+ Simultaneous solutions are N<A5.8858, Q. =0.70474

Should be integer
¢ Let N =6 and 2, = 0.7032 to exactly meet the passband specifications

+ Stopband specification exceeded =» margin for aliasing

|H(jQ)* =

POSTE2LCH 26



Impulse invariance with Butterworth filter

¢ Rewrite the magnitude-squared function

H,(s)H,(—s) = 1

1+ (s/5Q)?N L5
\\*"" 6 "‘*‘*// s-plane
+ The system function has 12 poles v |Imy
_ \ /
¢ To have a stable filter, H.(s) should have X%
. V|
three pole pairs in the left half of s-plane /x/ V| \X
\ |
/ 9
A \ |/ AQD \
x [/ o X
! 1
'\ I Re
\
/
X X
XX
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Impulse invariance with Butterworth filter

¢ With three pole pairs

0.12093
bl (8) =

(s* +0.36405 +0.4945)(s> + 0.99455 + 0.4945)(s> +1.3585s + 0.4945)

¢ After partial fraction use the transformation

A
Hels) = Z s— s » Hz) = Z 1 —fsz’Zz—l
k

k=1

& Final discrete-time filter
0.2871 — 0.44662 1 —2.1428 + 1.14552 1
1—1.2971z—1 +0.69492z—2 + 1—1.0691z—1 + 0.36992—2
1.8557 — 0.63032 1

H 1 —0.9972z=1 4 0.25702—2
POSTE2LCH 28
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Impulse invariance with Butterworth filter
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Discrete-time lIR filter design - bilinear transformation

¢ Continuous-time (analog) filter designed using s-plane (Laplace transform)

s = o+ 5 z—re—jw
H.(s) = / h(t)e~stdt H(z) = Z hn
H9) = [ (et Z hfnle—im

¢ Mapping between s-plane and z-plane
2 (1—2 2 (1—z71
— H(z
7 () b me-n (7 (55))
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Rational behind bilinear transformation

o0

¢ Recall H.(s) :/ h(t)e ®*dt and H(z) = i hin)z™"

o =\e T: numerical integration step size of the trapezoidal rule
s = % ln(z) Series based on area hyperbolic tangent function
_2|z-1 121 3+1 z—1 5+
T |z+1 3\z+1 5\z+1
2z—1
T2+1
21—zt
C T1+4 271

31
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Bilinear transformation - concept

¢ Given s =0 + 382

B 1+ (Td/2)8 . 1+ O'Td/2 —I-jQTd/2
11— (Ty/2)s 1—0Ty/2— jQT,;/2
+1f o0 <0, |z|] <1 forany Q
+1f o >0, |z| >1for any Q2

A

s-plane z-plane

Im

. - Image of
¢ Given s = JQ s = j€) (unit circle)

= 1 +jQTd/2 /\<
11— 5QT,/2
J d/ o KJ Re
=> |z|=1I for any s Image of

left half-plane

POSTE2LCH 32



Bilinear transformation - frequency relationship

2
¢ O= T tan(w/2), w = 2arctan(Q7T,/2)
d

w
w = 2 arctan (%)

» Frequency warping
POSTE2LCH 33



Bilinear transformation

ST
I
.'
¢ No problem of aliasing compared to ,'
. . . I
impulse invariance method kel
. . = = |
+ Good for highpass filter design fls o |
[ el
Il Il l\
- c‘? \\
¢ There exists the nonlinear compression \
. /
of the frequency axis I P
2 :_"_’____cf-___ _—
+ Suitable for piecewise-constant = T\T |
S \
\

magnitude response filters

|
i
+ Linear phase analog filters may lose | i
|
|
|

-

[H(e™)|
. . ‘
linear phase property after transformation 8
\
I\
I\
\
L8 oy
L 1IN L
0 w, © T [0
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Effect on phase response

H(el®)
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Impulse invariance vs. bilinear transformation

& Bilinear transformation
+ No aliasing effect

+ Not good for preserving phase response

¢ Impulse invariance
+ Aliasing happens due to sampling

+ Possible to preserve linear phase of analog filter

* Suitable to differentiator that requires linear phase
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Bilinear transformation with Butterworth filter

# Specifications: 0.89125 < |H(e’*)| <1, 0< |w| <0.27
|H(e?%)] < 0.17783, 0.37 < |w| <7

¢ Transformed analog specifications

) 2
0.89125 < |Hc(j) <1, 0<[Qf < = tan (Ozﬂ)
d

2 .
[H()| < 017783, —tan (%) <10 < oo
d

¢ Due to monotonicity of Butterworth filter
|H, (2 tan(0.17))| > 0.89125, |H.(j2tan(0.157))| < 017783
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Bilinear transformation with Butterworth filter

¢ Using similar approach as in impulse invariance method, we get N=5.305

¢ Let N =6, Q2. = 0.766, which now satisfies the stopband specification
|H, (52 tan(0.157))| < 017783

¢ This is reasonable for bilinear transformation due to lack of aliasing
+ Possible to have the desired stopband edge

¢ Derive stable system function H.(s) and apply bilinear transformation

2 [(1—2z1
S =
Ty 1421
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Impulse invariance vs. bilin
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Frequency transformation of lowpass IR filter

¢ So far, we have focused on lowpass IIR filter

¢ How can we implement general bandpass (multiband) filters?

|+ | (il Uil

1 -0, L L
5, |- NN

| I I I I

W, Wy W W) ™

POSTE2LCH

40



Possible approaches

¢ Transform from analog multiband filter
+ Acceptable only with bilinear transformation

+ Impulse invariance suffers from aliasing
=» Hard to implement highpass (or multiband) filters

¢ Transform from discrete-time lowpass filter

+ Works for both impulse invariance and bilinear transformation

POSTE2LCH
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Z-plane of prototype Fiere

TRANSFORMATIONS FROM A LOWPASS DIGITAL FILTER PROTOTYPE

Transformation table

TABLE 7.1
OF CUTOFF FREQUENCY #p TO HIGHPASS, BANDPASS, AND BANDSTOP FILTERS

Transformations

Associated Design Formulas

F Ho—
sin (_}Lzﬂ)

lowpass filter
z7' =
1 —az—!

Lowpass

z-plane of Highpass z7 =
€ 1 +az-!

desired filter

. kI
Bandpass Z7' = k=1 _-2 2ak -1 +1
k1t E+1°
~2_ e -1y 1=k
Bandstop 7= HE o
1=k.—>  Ja -1 4
1+k° 1+k°

POSTE2LCH

S1
wp = desired cutoff frequency

#,
o= — -
B —
cus( p)“’ﬂ

wp = desired cutoff frequency
@p3+@n
cos (Pﬂ_p)
=
o —
cos (_1”2_)_-”])
Op

(i3] — &
k = cot (u) tan (T

o=
in (Hp—:mp)

wp) = desired lower cutoff frequency
wpy = desired upper cutoff frequency

@+
cos (_PZTL])
"= [} '?:k)
cos (_._-E'Tf’_l.)
Fp

e O —wp1
k= tan (—7—) tan (?)

wpy = desired 10\;’91' cutoff frequency
wpy = desired upper cutoff frequency
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lIR filter with linear phase

¢ IR filters generally have nonlinear phases

¢ Possible to have linear phase IIR filters for non real-time applications

x[n] —— IR h[n] —— 2[n]

z[—n)] : IR h[n] —— wn)

yln] = w|—n]
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Frequency-domain analysis

* Z(e7¥) = H(?¥) X (%)
W (') = H(e)Z" (&)
= H(“)H* (%) X*(e?¥)
= [H(e)PX™(e)

2[—n] BLE Z*(e79)

¢ Since y[n] = w|—n|

Y (%) = W*(e?¥) = |H (') X (e7¥)

=

Real number =» no phase distortion at all!

POSTE2LCH 45



Matlab example

% Linear phase IIR filter example from Mathworks.com
fs = 100;

t =0:1/fs:1;

X = sin(2*pi*t*3)+.25*sin (2*pi*t*40);

b = ones(1,10)/10;

y = filtfilt(b,1,x);

yy = filter(b,1,x);
plot(t,x,t,y,'--'",t,yy,":")

Noncausal filtering
Normal filtering

o° o o°

POSTE2LCH
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FIR Filter Design
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FIR filter design

¢ Design problem: FIR system function

M
H(z) = Z bz "
k=0
bn, <n<M
hin] = =n s
0, otherwise

¢ Need to find
+ Degree M
+ Filter coefficients by, (or h[n]) for 0 <n < M

to approximate the desired frequency response

POSTE2LCH
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Lowpass filter as an example

1, |w| <we

¢ l|deal lowpass filter Hlp(ejw) = {0 <
: We <WST

h[n] = e < n<
™

¢ Discrete-time IR filter: transform from continuous-time |IR lowpass filter
[H. ()]

9 1
T 14 (/)2

[He(582)]

Get discrete-time filter using either
impulse invariance or bilinear transformation

0 Q, Q

¢ How to get FIR filter? h[n] is non-causal and infinite!
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Design of FIR filter by windowing

¢ Most straightforward approach

+ Truncate the ideal impulse response by windowing (to have finite length) and
do time shifting (to make it causal)

hln] = hd [nJw(n]

Finite length A/Inflmte length \Finite length window

impulse response |deal impulse response

¢ Use rectangular window for simple truncation

1, 0<n<M
w(n] = .
0, otherwise
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Lowpass filter example

¢ Ideal lowpass filter with zero delay

1, lw| < we
0, we < lw| <7

Hlp(ejw) =

hip[n] =

sin wen

™

, —oo<n<oo

¢ Ideal lowpass filter with delay

. e_jw'n'd
Hip(e’*) = ,

0,

sinwe(n — ng)

hip[n] =

¢ lIdeal lowpass filter with delay and truncation
sinwe(n — ng)

w(n —ng)

hip[n] =
POSTE2LCH

w(n —ng)

?

?

lw| < we
we < |w| <7

—oo<n<oo

—n1 <n<ng

-0.05

0.35

“lw, = 0.57

025
027
015
0.1

0.05

hlp [’I’L]

0.1 . . . .
-100 -8 60 40 -20

0.35

0

20 40

60 80 100

031

025

0.15 |

50

1 (;0 fj’)q



H(eY) =

Frequency-domain representation

¢ From modulation (or windowing) theorem (2.9.7)

Hy(e?)W (7“9 dg

—TT

______

POSTE2LCH
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Tradeoff relationship

¢ If w[n] =1 for all n, no truncation

> W(e?“) becomes a periodic impulse train with period 27

> H(e’¥) = Hy(e)

¢ How to choose the window size?

+ As short as possible to minimize implementation computation

+ Have W(ejw) like an impulse as much as possible
=>» Requires long window size

¢ Abrupt change in window
=> More ripples in frequency-domain

sin (w(M + 1)/2)
sin (w/2)

(M=17)

Peak sidelobe

2=

(M+1)

POSTE2LCH
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Commonly used windows

¢ Check Section 7.5.1
+ Rectangular
+ Bartlett (triangular)
+ Hann

+ Hamming
4+ Blackman
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Commonly used windows

wn]

Rectangular

/

1.0
Hamming
——— - Hann
0.8— — == Blackman

————— Bartlett

|
|
|
|
|
0.6 :
|
|
0.4 |
|
|
02 :
S | \
Vo | NN J
0 M M
2
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Commonly used windows

Figure 7.30 Fourier transforms (log magnitude) of windows of Figure 7.29 with M = 50. (a) Rectangular. (b) Bartlett.
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Commonly used windows

Figure 7.30 (continued) (c) Hann. (d) Hamming. (e) Blackman.
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Comparison of standard windows

TABLE7.2 COMPARISON OF COMMONLY USED WINDOWS

Peak Transition

Peak Approximation  Equivalent Width

Side-Lobe  Approximate Error, Kaiser of Equivalent

Type of Amplitude Width of 20logyg 8 Window, Kaiser
Window (Relative) Main Lobe (dB) P Window
Rectangular —13 4 /(M + 1) —21 0 1.817/M
Bartlett —25 8t/M ~25 1.33 23In/M
Hann —31 St /M —44 3.86 S50lx/M
Hamming —41 S8t/M —353 4.86 6.277r/M
Blackman —57 12 /M —74 7.04 9197 /M

POSTE2LCH
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Processing steps of Fourier analysis

Antialiasin Continuous-to-
=] e filté:gr —> discrete-time DFT p——>
s(t) 4 x.(f) | conversion V[k]
H,, (7€)
: 1 4 : :
V(er¥) = — X ()W (e?w=9))dp
2w J_ .
N-1 | The k-th DFT frequency
Vik] = Z v[n)e I@T/Nkn B —01,...,N -1 /
n=0
= V(e7¥) |w=2rk/N wi = 21k /N
Corresponding continuous-time frequency\»Q o2k
rPOSTE2LCH k= NT
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lllustration

|
_glil 0 Qll Q
(a)
! H,,(j2)
I /_X |
7 0 I M
x (b) r
X.(j)
] | | |
7 -Q 0 Q ™ Q
r (c) a8
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DFT analysis of sinusoidal signals

Continuous-to-
discrete-time DFT p——
conversion x[n] v[n] V[k]

1Antialiafsfilfclg "
owpass filter
s | P x.(1)

Hya(j )

sc(t) = Ag cos(Qot + 0g) + Ay cos(t +601), —oo<t<oo
x[n] = Ag cos(won + 0p) + Ay cos(win+6;), —oo<n< oo

v[n] = Agw(n| cos(won + by) + Ajw[n] cos(win + 01)
Ao

— Trw[n]ejeo ejwon +

A1
2

A
>

Ao

w[n]e_jele_jwln
2

w[n]e_je" g~ Jwon w[n]ejelej“’l” +

V() = %engW(ej(“’_“’O)) + %e—jﬁow(ej(wrwo)) + %ejel W(ej(w—wl)) + %e—jm W(ej(w+w1))
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Effect of

Length 64 =
rectangular window ”

320

windowing

W (/@)

- 0

(a)

Lo

T W

IV (el Qo = (271'/6) x 104
Q; = (27/3) x 10*

o]

- 27 27 0

27 27 T w

6 3

(b)
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Effect of windowing

¢ Two primary effects

+ Reduced resolution for close frequencies
=» Related to width of main lobe

+ Leakage from one frequency component to another
=>» Related to relative amplitude ratio of main lobe to side lobes

¢ Need to carefully select window depending on applications
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Generalized linear phase FIR filter by windowing

¢ Recall four classes of FIR systems with generalized linear-phase

+ Type | ey
. Symmetric:h[’n] = h[M — n] [ [ ] l l
* M even H )
+ Type ll R
* Symmetric: h[n] = h[M — n] , o
e M odd l I ]z] I ML
+ Type 1] 2 (b)
» Antisymmetric: h|n| = —h[M — n) 1y Sy
* M even ; T
+ Type IV o
* Antisymmetric: h[n] = —h[M — n] (| Centerof
+ Modd Il mmmmm e
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Generalized linear phase FIR filter by windowing

¢ Often aim at designing a causal system with a generalized linear phase
+ Stability is not a problem with FIR systems

¢ With (anti-)symmetric (possibly infinite length) impulse response,
hd[M — n] = hd[n]
Symmetric at M/2

choose windows being symmetric at M/2

wM-—-n], 0<n<M
wln| = .
0, otherwise

¢ Truncated filter h[n] = hqg[n|w|n] still (anti-)symmetric
=>» Generalized linear phase!!!
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FIR filter design procedure

¢ Specifications to meet
+ Transition bandwidth: Aw =ws —w, 7
+ Ripple levels: d5, 9,

4 Window design method
+ Choose window shape

+ Adjust window length M
=» One parameter to adjust

¢ Need to perform trial and error
=> Not a good method
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Kaiser window

¢ Formalization of window design method
+ No need for trial and error
+ Easy way to find the trade-off between the main-lobe width and side-lobe area
+ Design with two parameters: M and
+ Can control the tradeoff between side-lobe amplitude and main-lobe width

* This was not possible for previous windows

Zeroth-order Bessel function of the first kind

¢ Kaiser window expression
wn| = {Im_ o) /a)?]/Io(B), O0<n<M

0, otherwise

witha=M/2 and 8 >0
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Kaiser window

¢ Becomes rectangular window
when 8 =0
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Design FIR filter by Kaiser window

¢ Calculate M and B to meet the filter specifications

+ The peak approximation error 0 is determined by 3

¢ Define A = —201log;, 6 |

1+6

0.1102(A — 8.7), A > 50
B =< 0.5842(A —21)%4 4+ 0.07886(A — 21), 21<A<50
0, A <91 0.5

d

¢ Passband/stopband frequencies also defined by ¢
[H(e")| >21~46, [H()| <6
+ Transition width becomes Aw = wy; — wy

A—
¢ Possible to show M = 2.285A8w to satisfy the specifications
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Comparison of standard windows

TABLE7.2 COMPARISON OF COMMONLY USED WINDOWS

Peak Transition

Peak Approximation  Equivalent Width

Side-Lobe  Approximate Error, Kaiser of Equivalent

Type of Amplitude Width of 20logyg 8 Window, Kaiser
Window (Relative) Main Lobe (dB) P Window
Rectangular —13 4 /(M + 1) —21 0 1.817/M
Bartlett —25 8t/M ~25 1.33 23In/M
Hann —31 St /M —44 3.86 S50lx/M
Hamming —41 S8t/M —353 4.86 6.277r/M
Blackman —57 12 /M —74 7.04 9197 /M
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Matlab examples

% Butterworth filter example

fc = 300; % cutoff frequency (in Hz)
fs = 1000; % sampling frequency (in Hz)
[b,a] = butter(6,fc/(fs/2));

freqz (b, a)

dataIn = randn(1000,1);
dataOut = filter (b, a,dataln);

figure (2)
plot(1:1000,dataIn,1:1000,datalut, 'r'")

legend ('Random samples', 'Filtered samples')
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Matlab examples

% designfilt example

lpFilt = designfilt('lowpassfir', 'PassbandFrequency',0.25,
'StopbandFrequency',0.35, 'PassbandRipple', 0.5,
'StopbandAttenuation', 65, 'DesignMethod', 'kaiserwin') ;
fvtool (1pFilt)

dataIn = rand(1000,1);

dataOut = filter(lpFilt,dataln);
plot(1:1000,dataIn,1:1000,datalut, 'r'")
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