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Definition of filter

 Filter, in broader sense, covers any system
 Distortion environments are also filters

 We denote filters as controllable systems here
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Filter design process

 Three design steps

 Focus on lowpass filters
 Can be generalized to other frequency-selective filters 
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Example specifications

 Specifications for a discrete-time lowpass filter
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Specifications of frequency response

 Typical lowpass filter specifications in terms of tolerable
 Passband distortion  as smallest as possible
 Stopband attenuation  as greatest as possible
 Width of transition band  as narrowest as possible

 Improving one often worsens others  tradeoff exists

 Increasing filter order may improve all  increase complexity
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Design a filter

 Design goal
 Find system function to make frequency response meet the 
specifications (tolerances)

 Infinite impulse response (IIR) filter
 Poles insider unit circle due to causality and stability
 Rational function approximation

 Finite impulse response (FIR) filter
 For filters with linear phase requirement
 Polynomial approximation
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Example of IIR filter design

 For rational (and stable and causal) system function

find the system coefficients such that the corresponding frequency response

provides a good approximation to a desired response
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IIR vs. FIR

 Either FIR or IIR is often dependent on the phase requirements

 Only FIR filter can be at the same time stable, causal and GLP

 Design principle
 If GLP is required  FIR
 If not  IIR preferable because IIR can meet specifications with lower complexity
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IIR vs. FIR

 IIR
 Rational system function
 Poles and zeros
 Stable/unstable
 Hard to control phase
 Low order (4-20)
 Designed on the basis of analog 

filter

 FIR
 Polynomial system function
 Only zeros
 Always stable
 Easy to get (generalized) linear 

phase
 High order (20-200)
 Usually unrelated to analog filter 

designs
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IIR Filter Design
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Discrete-time IIR filters from continuous-time filters

 Continuous-time (or analog) IIR filter design is highly advanced
 Relatively simple closed-form design possible

 Discrete-time IIR filter design
 Filter specifications for discrete-time filter
 Convert to continuous-time specifications
 Design continuous-time filter
 Convert to discrete-time filter

• Impulse invariance method
• Bilinear transformation method

12



Analog filter designs

 Butterworth filter
 Type I Chebyshev filter
 Type II Chebyshev filter
 Elliptic filter
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Butterworth lowpass filter

 Filter form
 Two parameters

• Order N
• Cutoff frequency 

 Monotonic in both passband and stopband
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Type I Chebyshev lowpass filter

 Filter form

where
 Three parameters

• Order N
• Cutoff frequency 
• Allowable passband ripple

 has equi-ripple error 
in passband and monotonic in 
stopband
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Type II Chebyshev lowpass filter

 Filter form

 Similar to Type I Chebyshev lowpass filter
 now has equi-ripple error in stopband and flat in passband

16



Elliptic filter

 Filter form

where             is a Jacobian elliptic function

 has equi-ripples in
both passband and stopband
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Discrete-time IIR filter design – impulse invariance

 Recall “discrete-time processing of continuous-time signals” in Section 4.4
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Output signal

 Necessary conditions
 The discrete-time system is LTI
 Continuous-time signal          is bandlimited
 Sampling rate       is at or above the Nyquist rate

 If all conditions are satisfied, the output signal becomes 

where 
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Cutoff frequency of 
ideal lowpass filter



Impulse invariance

 Recall

 We want to have 

 In time-domain:
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Only true when the filter is bandlimited



Impulse invariance - aliasing

 If the analog filter is not bandlimited (typically the case in practice)
Aliasing occurs in the discrete-time filter
 Impulse invariance not appropriate for designing highpass filters
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How can we avoid the aliasing?

 Consider higher sampling frequency for analog filter
 Will this work? No!

 Filter specifications given from discrete-time filter requirements
 The specifications transformed to continuous-time by
 Continuous-time filter designed by continuous-time specifications
 Final discrete-time filter obtained by impulse invariance method (sampling)

 Effect of                   cancels out

 Aliasing can be avoided by overdesigning analog filter
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Interpretation using system functions

 Transformation from continuous-time system to discrete-time system is 
easy to carry out using system functions

 After partial fraction expansion
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Interpretation using system functions

 Mapping from           to
 Pole of            at              maps to pole of           at
Stability and causality preserved

 Continuous-time:
 Discrete-time:                  inside the unit circle  
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Impulse invariance with Butterworth filter

 Specifications:

 Since the effect                  cancels out, set T=1 and

 Transformed analog specifications 

 Due to monotonicity of Butterworth filter 
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Impulse invariance with Butterworth filter

 The magnitude-squared function of Butterworth filter

 From the specifications

 Simultaneous solutions are

 Let            and                      to exactly meet the passband specifications
 Stopband specification exceeded  margin for aliasing
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Should be integer



Impulse invariance with Butterworth filter

 Rewrite the magnitude-squared function

 The system function has 12 poles

 To have a stable filter,            should have 
three pole pairs in the left half of s-plane
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Impulse invariance with Butterworth filter

 With three pole pairs

 After partial fraction, use the transformation

 Final discrete-time filter
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Impulse invariance with Butterworth filter
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Discrete-time IIR filter design – bilinear transformation

 Continuous-time (analog) filter designed using s-plane (Laplace transform)

 Mapping between s-plane and z-plane
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Rational behind bilinear transformation

 Recall                                         and
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T: numerical integration step size of the trapezoidal rule

Series based on area hyperbolic tangent function



Bilinear transformation - concept

 Given

 If
 If

 Given

 |z|=1 for any s
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Bilinear transformation – frequency relationship


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Frequency warping



Bilinear transformation

 No problem of aliasing compared to 
impulse invariance method
 Good for highpass filter design

 There exists the nonlinear compression 
of the frequency axis
 Suitable for piecewise-constant 

magnitude response filters
 Linear phase analog filters may lose 

linear phase property after transformation
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Effect on phase response
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Impulse invariance vs. bilinear transformation

 Bilinear transformation
 No aliasing effect
 Not good for preserving phase response

 Impulse invariance
 Aliasing happens due to sampling
 Possible to preserve linear phase of analog filter

• Suitable to differentiator that requires linear phase
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Bilinear transformation with Butterworth filter

 Specifications:

 Transformed analog specifications 

 Due to monotonicity of Butterworth filter 
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Bilinear transformation with Butterworth filter

 Using similar approach as in impulse invariance method, we get N=5.305

 Let                               , which now satisfies the stopband specification

 This is reasonable for bilinear transformation due to lack of aliasing
 Possible to have the desired stopband edge

 Derive stable system function           and apply bilinear transformation
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Impulse invariance vs. bilinear transformation
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Frequency transformation of lowpass IIR filter

 So far, we have focused on lowpass IIR filter
 How can we implement general bandpass (multiband) filters?
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Possible approaches

 Transform from analog multiband filter
 Acceptable only with bilinear transformation
 Impulse invariance suffers from aliasing
 Hard to implement highpass (or multiband) filters

 Transform from discrete-time lowpass filter
 Works for both impulse invariance and bilinear transformation
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Transformation table
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Z-plane of prototype 
lowpass filter

z-plane of 
desired filter



Lowpass to highpass filter transformation
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IIR filter with linear phase

 IIR filters generally have nonlinear phases
 Possible to have linear phase IIR filters for non real-time applications
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IIR

IIR



Frequency-domain analysis



 Since 
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Real number  no phase distortion at all!



Matlab example
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% Linear phase IIR filter example from Mathworks.com
fs = 100;
t = 0:1/fs:1;
x = sin(2*pi*t*3)+.25*sin(2*pi*t*40);

b = ones(1,10)/10;             % 10 point averaging filter
y = filtfilt(b,1,x);           % Noncausal filtering
yy = filter(b,1,x);            % Normal filtering
plot(t,x,t,y,'--',t,yy,':')



FIR Filter Design
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FIR filter design

 Design problem: FIR system function

 Need to find
 Degree M
 Filter coefficients                      for

to approximate the desired frequency response  

48



Lowpass filter as an example

 Ideal lowpass filter

 Discrete-time IIR filter: transform from continuous-time IIR lowpass filter

 How to get FIR filter? h[n] is non-causal and infinite!
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Get discrete-time filter using either 
impulse invariance or bilinear transformation



Design of FIR filter by windowing

 Most straightforward approach
 Truncate the ideal impulse response by windowing (to have finite length) and 

do time shifting (to make it causal)

 Use rectangular window for simple truncation
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Finite length 
impulse response

Infinite length 
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Finite length window



Lowpass filter example

 Ideal lowpass filter with zero delay

 Ideal lowpass filter with delay

 Ideal lowpass filter with delay and truncation
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Frequency-domain representation

 From modulation (or windowing) theorem (2.9.7)
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Tradeoff relationship

 If                for all n, no truncation
 becomes a periodic impulse train with period 


 How to choose the window size?
 As short as possible to minimize implementation computation
 Have               like an impulse as much as possible
 Requires long window size 

 Abrupt change in window
 More ripples in frequency-domain
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Commonly used windows

 Check Section 7.5.1
 Rectangular
 Bartlett (triangular)
 Hann
 Hamming
 Blackman
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Commonly used windows
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Commonly used windows
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Figure 7.30 Fourier transforms (log magnitude) of windows of Figure 7.29 with M = 50. (a) Rectangular. (b) Bartlett.



Commonly used windows
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Figure 7.30 (continued) (c) Hann. (d) Hamming. (e) Blackman.



Comparison of standard windows
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Processing steps of Fourier analysis
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The k-th DFT frequency

Corresponding continuous-time frequency



Illustration
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DFT analysis of sinusoidal signals
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Effect of windowing
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Length 64 
rectangular window



Effect of windowing

 Two primary effects
 Reduced resolution for close frequencies 
 Related to width of main lobe

 Leakage from one frequency component to another
 Related to relative amplitude ratio of main lobe to side lobes

 Need to carefully select window depending on applications
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Generalized linear phase FIR filter by windowing

 Recall four classes of FIR systems with generalized linear-phase
 Type I

• Symmetric:
• M even 

 Type II
• Symmetric:
• M odd 

 Type III
• Antisymmetric:
• M even 

 Type IV
• Antisymmetric:
• M odd 
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Generalized linear phase FIR filter by windowing

 Often aim at designing a causal system with a generalized linear phase
 Stability is not a problem with FIR systems

 With (anti-)symmetric (possibly infinite length) impulse response,

choose windows being symmetric at M/2

 Truncated filter                            still (anti-)symmetric 
 Generalized linear phase!!!
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Symmetric at M/2



FIR filter design procedure

 Specifications to meet
 Transition bandwidth: 
 Ripple levels: 

 Window design method
 Choose window shape
 Adjust window length M
 One parameter to adjust

 Need to perform trial and error 
 Not a good method
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Kaiser window

 Formalization of window design method
 No need for trial and error 
 Easy way to find the trade-off between the main-lobe width and side-lobe area
 Design with two parameters: 
 Can control the tradeoff between side-lobe amplitude and main-lobe width

• This was not possible for previous windows

 Kaiser window expression

with                   
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Zeroth-order Bessel function of the first kind



Kaiser window

 Becomes rectangular window
when 
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Design FIR filter by Kaiser window

 Calculate                 to meet the filter specifications
 The peak approximation error     is determined by

 Define

 Passband/stopband frequencies also defined by

 Transition width becomes

 Possible to show                           to satisfy the specifications   
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Comparison of standard windows
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Matlab examples
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% Butterworth filter example
fc = 300;    % cutoff frequency (in Hz)
fs = 1000;  % sampling frequency (in Hz)
[b,a] = butter(6,fc/(fs/2));
freqz(b,a)

dataIn = randn(1000,1);
dataOut = filter(b,a,dataIn);

figure(2)
plot(1:1000,dataIn,1:1000,dataOut,'r')
legend('Random samples','Filtered samples')



Matlab examples
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% designfilt example

lpFilt = designfilt('lowpassfir','PassbandFrequency',0.25, ...
'StopbandFrequency',0.35,'PassbandRipple',0.5, ...
'StopbandAttenuation',65,'DesignMethod','kaiserwin');
fvtool(lpFilt)
dataIn = rand(1000,1);
dataOut = filter(lpFilt,dataIn);
plot(1:1000,dataIn,1:1000,dataOut,'r')


