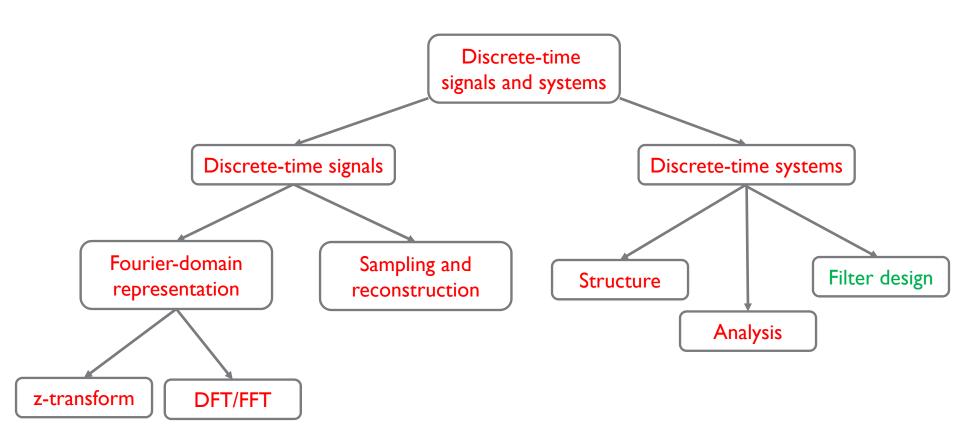


Digital Signal Processing

POSTECH

Department of Electrical Engineering Junil Choi

Course at glance

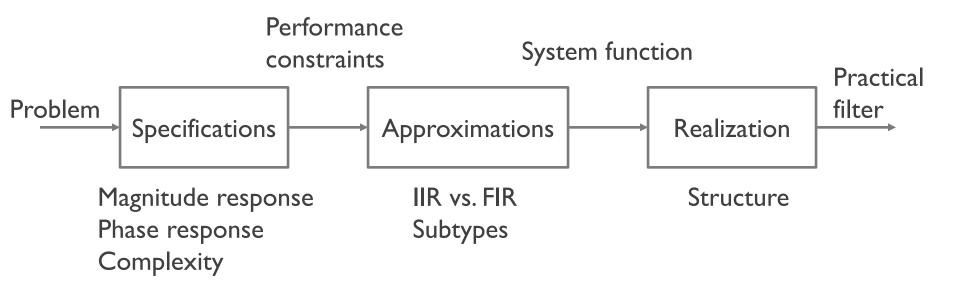


Definition of filter

- ◆ Filter, in broader sense, covers any system
 - → Distortion environments are also filters
- We denote filters as controllable systems here

Filter design process

◆ Three design steps

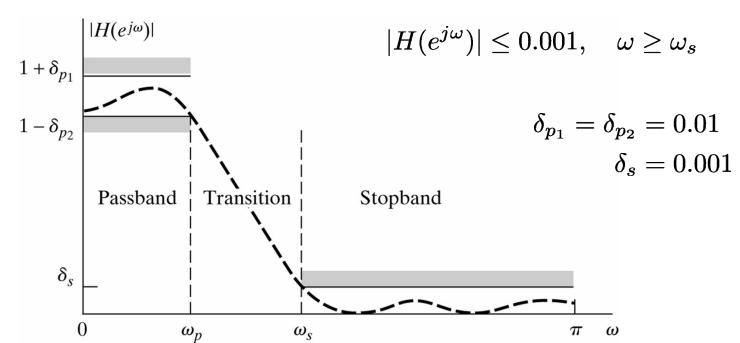


- Focus on lowpass filters
 - → Can be generalized to other frequency-selective filters

Example specifications

Specifications for a discrete-time lowpass filter

$$1 - 0.01 \le |H(e^{j\omega})| \le 1 + 0.01, \quad 0 \le \omega \le \omega_p$$



Specifications of frequency response

- ◆ Typical lowpass filter specifications in terms of tolerable
 - → Passband distortion → as smallest as possible
 - → Stopband attenuation → as greatest as possible
 - → Width of transition band → as narrowest as possible
- Improving one often worsens others tradeoff exists
- ◆ Increasing filter order may improve all → increase complexity

Design a filter

- Design goal
 - → Find system function to make frequency response meet the specifications (tolerances)
- Infinite impulse response (IIR) filter
 - → Poles insider unit circle due to causality and stability
 - → Rational function approximation
- Finite impulse response (FIR) filter
 - → For filters with linear phase requirement
 - → Polynomial approximation

Example of IIR filter design

For rational (and stable and causal) system function

$$H(z) = \frac{\sum_{k=0}^{M} b_k z^{-k}}{1 - \sum_{k=1}^{N} a_k z^{-k}}$$

find the system coefficients such that the corresponding frequency response

$$H(e^{j\omega}) = H(z) \mid_{z=e^{j\omega}}$$

provides a good approximation to a desired response

$$H(e^{j\omega}) \approx H_{\text{desired}}(e^{j\omega})$$

IIR vs. FIR

- Either FIR or IIR is often dependent on the phase requirements
- Only FIR filter can be at the same time stable, causal and GLP
- Design principle
 - → If GLP is required → FIR.
 - → If not → IIR preferable because IIR can meet specifications with lower complexity.

IIR vs. FIR

- ◆ IIR
 - → Rational system function
 - → Poles and zeros
 - → Stable/unstable
 - → Hard to control phase
 - **→** Low order (4-20)
 - Designed on the basis of analog filter

◆ FIR

- → Polynomial system function
- → Only zeros
- → Always stable
- Easy to get (generalized) linear phase
- → High order (20-200)
- Usually unrelated to analog filter designs

IIR Filter Design

Discrete-time IIR filters from continuous-time filters

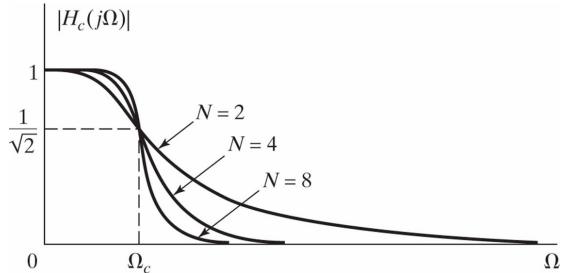
- Continuous-time (or analog) IIR filter design is highly advanced
 - → Relatively simple closed-form design possible
- Discrete-time IIR filter design
 - → Filter specifications for discrete-time filter
 - → Convert to continuous-time specifications
 - → Design continuous-time filter
 - → Convert to discrete-time filter
 - Impulse invariance method
 - Bilinear transformation method

Analog filter designs

- Butterworth filter
- ◆ Type I Chebyshev filter
- ◆ Type II Chebyshev filter
- Elliptic filter

Butterworth lowpass filter

- Filter form $|H_c(j\Omega)|^2 = \frac{1}{1 + (\Omega/\Omega_c)^{2N}}$
 - → Two parameters
 - Order N
 - Cutoff frequency Ω_c
 - → Monotonic in both passband and stopband

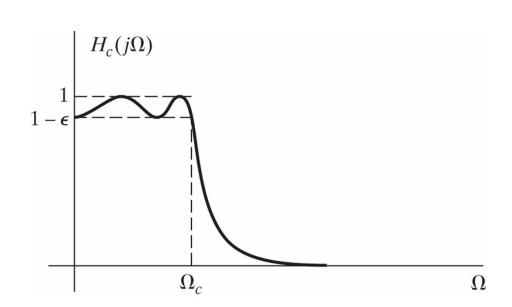


Type I Chebyshev lowpass filter

• Filter form $|H_c(j\Omega)|^2 = \frac{1}{1 + \epsilon^2 V_N^2(\Omega/\Omega_c)}$

where
$$V_N(x) = \cos(N\cos^{-1}x)$$

- → Three parameters
 - Order N
 - Cutoff frequency Ω_c
 - Allowable passband ripple ϵ
- $|H_c(j\Omega)|^2$ has equi-ripple error in passband and monotonic in stopband



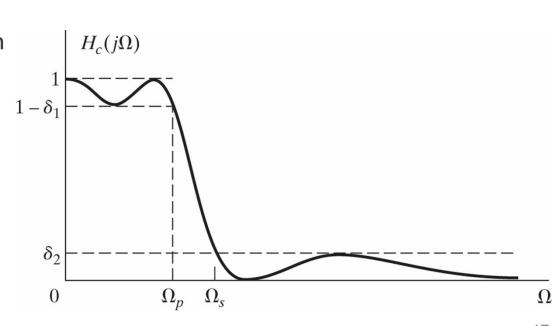
Type II Chebyshev lowpass filter

• Filter form
$$|H_c(j\Omega)|^2 = \frac{1}{1 + [\epsilon^2 V_N^2(\Omega/\Omega_c)]^{-1}}$$

- Similar to Type I Chebyshev lowpass filter
 - $+ |H_c(j\Omega)|^2$ now has equi-ripple error in stopband and flat in passband

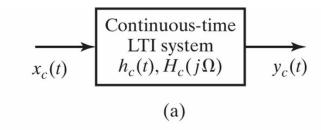
Elliptic filter

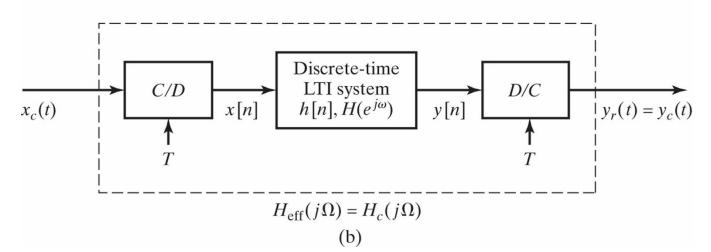
- Filter form $|H_c(j\Omega)|^2=\frac{1}{1+\epsilon^2U_N^2(\Omega)}$ where $U_N(\Omega)$ is a Jacobian elliptic function
- $lacktriangleright |H_c(j\Omega)|^2$ has equi-ripples in both passband and stopband



Discrete-time IIR filter design – impulse invariance

Recall "discrete-time processing of continuous-time signals" in Section 4.4





Output signal

- Necessary conditions
 - → The discrete-time system is LTI
 - igspace Continuous-time signal $x_c(t)$ is bandlimited
 - lacktriangle Sampling rate Ω_s is at or above the Nyquist rate $2\Omega_N$
- If all conditions are satisfied, the output signal becomes

where
$$Y_r(j\Omega)=H_{ ext{eff}}(j\Omega)X_c(j\Omega)$$
 Cutoff frequency of ideal lowpass filter $H_{ ext{eff}}(j\Omega)=egin{cases} H(e^{j\Omega T}),&|\Omega|<\pi/T\\ 0,&|\Omega|\geq\pi/T \end{cases}$

Impulse invariance

• Recall
$$H_{\mathrm{eff}}(j\Omega) = \begin{cases} H(e^{j\Omega T}), & |\Omega| < \pi/T \\ 0, & |\Omega| \ge \pi/T \end{cases}$$

• We want to have $H_{\rm eff}(j\Omega) = H_c(j\Omega)$

$$H(e^{j\omega}) = H_c(j\omega/T), \quad |\omega| < \pi$$

• In time-domain: $h[n] = Th_c(nT)$

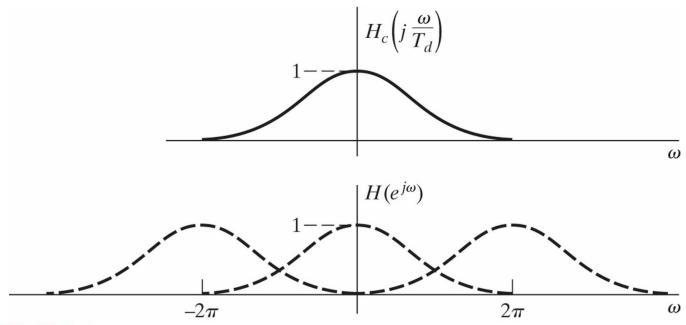
$$X(e^{j\omega}) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X_c \left(j \left(\frac{\omega}{T} - \frac{2\pi k}{T} \right) \right)$$

 $H(e^{j\omega}) = T\frac{1}{T} \sum_{k=-\infty}^{\infty} H_c \left(j \left(\frac{\omega}{T} - \frac{2\pi k}{T} \right) \right) \blacksquare$ Because $H_c(j\Omega) = 0$, $|\Omega| \ge \pi/T$ $=H_c\left(j\frac{\omega}{T}\right), \quad |\omega| < \pi$

Only true when the filter is bandlimited

Impulse invariance - aliasing

- ◆ If the analog filter is not bandlimited (typically the case in practice)
 - → Aliasing occurs in the discrete-time filter
 - → Impulse invariance not appropriate for designing highpass filters



How can we avoid the aliasing?

- lacktriangle Consider higher sampling frequency for analog filter $\Omega_s=1/T$
- Will this work? No!
 - → Filter specifications given from discrete-time filter requirements
 - lacktriangledown The specifications transformed to continuous-time by $\Omega=\omega/T$
 - → Continuous-time filter designed by continuous-time specifications
 - → Final discrete-time filter obtained by impulse invariance method (sampling)

$$H(e^{j\omega}) = \sum_{k=-\infty}^{\infty} H_c \left(j \left(\frac{\omega}{T} - \frac{2\pi k}{T} \right) \right)$$

- \rightarrow Effect of $\Omega_s = 1/T$ cancels out
- Aliasing can be avoided by overdesigning analog filter

Interpretation using system functions

- ◆ Transformation from continuous-time system to discrete-time system is easy to carry out using system functions
- ◆ After partial fraction expansion

$$H_c(s) = \sum_{k=1}^{N} \frac{A_k}{s - s_k}$$

$$h_c(t) = \begin{cases} \sum_{k=1}^{N} A_k e^{s_k t}, & t \ge 0\\ 0, & t < 0 \end{cases}$$

$$h[n] = T_d h_c(nT_d)$$

$$= \sum_{k=1}^{N} T_d A_k e^{s_k n T_d} u[n]$$

$$= \sum_{k=1}^{N} T_d A_k (e^{s_k T_d})^n u[n]$$

$$\stackrel{\mathcal{Z}}{\longleftrightarrow} H(z) = \sum_{k=1}^{N} \frac{T_d A_k}{1 - e^{s_k T_d} z^{-1}}$$

Interpretation using system functions

- lacktriangle Mapping from $H_c(s)$ to H(z)
 - → Pole of $H_c(s)$ at $s = s_k$ maps to pole of H(z) at $z = e^{s_k T_d}$ → Stability and causality preserved
 - ullet Continuous-time: $\operatorname{Re}\{s_k\} < 0$
 - igspace Discrete-time: $z=e^{s_kT_d}$ inside the unit circle

- Specifications: $0.89125 \le |H(e^{j\omega})| \le 1$, $0 \le |\omega| \le 0.2\pi$ $|H(e^{j\omega})| \le 0.17783$, $0.3\pi \le |\omega| \le \pi$
- lacktriangle Since the effect $\Omega_s=1/T$ cancels out, set T=1 and $\omega=\Omega$
- Transformed analog specifications

$$0.89125 \le |H_c(j\Omega)| \le 1, \quad 0 \le |\Omega| \le 0.2\pi$$

 $|H_c(j\Omega)| \le 0.17783, \quad 0.3\pi \le |\Omega| \le \pi$

Due to monotonicity of Butterworth filter

$$|H_c(j0.2\pi)| \ge 0.89125$$

$$|H_c(j0.3\pi)| \le 017783$$

The magnitude-squared function of Butterworth filter

$$|H_c(j\Omega)|^2 = \frac{1}{1 + (\Omega/\Omega_c)^{2N}}$$

• From the specifications $|H_c(j0.2\pi)| \ge 0.89125, |H_c(j0.3\pi)| \le 0.017783$

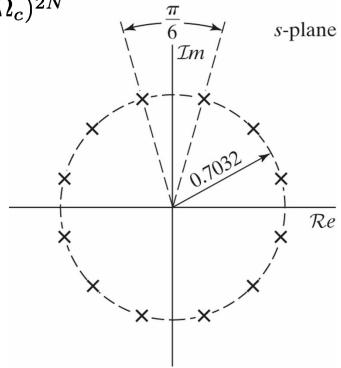
$$1 + \left(\frac{0.2\pi}{\Omega_c}\right)^{2N} = \left(\frac{1}{0.89125}\right)^2, \quad 1 + \left(\frac{0.3\pi}{\Omega_c}\right)^{2N} = \left(\frac{1}{0.17783}\right)^2$$

- \star Simultaneous solutions are $N=5.8858,~\Omega_c=0.70474$ Should be integer
- lacktriangle Let N=6 and $\Omega_c=0.7032$ to exactly meet the passband specifications
 - → Stopband specification exceeded → margin for aliasing

Rewrite the magnitude-squared function

$$H_c(s)H_c(-s) = \frac{1}{1 + (s/j\Omega_c)^{2N}}$$

- → The system function has 12 poles
- To have a stable filter, $H_c(s)$ should have three pole pairs in the left half of s-plane



With three pole pairs

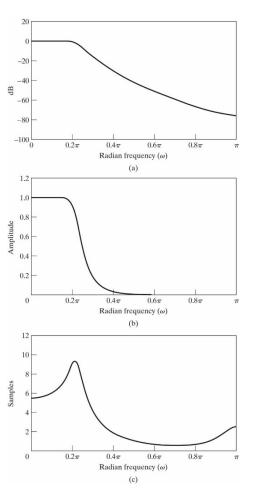
$$H_c(s) = \frac{0.12093}{(s^2 + 0.3640s + 0.4945)(s^2 + 0.9945s + 0.4945)(s^2 + 1.3585s + 0.4945)}$$

◆ After partial fraction, use the transformation

$$H_c(s) = \sum_{k=1}^{N} \frac{A_k}{s - s_k} \longrightarrow H(z) = \sum_{k=1}^{N} \frac{T_d A_k}{1 - e^{s_k T_d} z^{-1}}$$

Final discrete-time filter

$$H(z) = \frac{0.2871 - 0.4466z^{-1}}{1 - 1.2971z^{-1} + 0.6949z^{-2}} + \frac{-2.1428 + 1.1455z^{-1}}{1 - 1.0691z^{-1} + 0.3699z^{-2}} + \frac{1.8557 - 0.6303z^{-1}}{1 - 0.9972z^{-1} + 0.2570z^{-2}}$$



Discrete-time IIR filter design - bilinear transformation

Continuous-time (analog) filter designed using s-plane (Laplace transform)

$$s = \sigma + j\Omega$$
 $z = re^{-j\omega}$ $H_c(s) = \int_{-\infty}^{\infty} h(t)e^{-st}dt$ $H(z) = \sum_{n=-\infty}^{\infty} h[n]z^{-n}$ $H_c(j\Omega) = \int_{-\infty}^{\infty} h(t)e^{-j\Omega t}dt$ $H(e^{j\omega}) = \sum_{n=-\infty}^{\infty} h[n]e^{-j\omega n}$

Mapping between s-plane and z-plane

$$s = \frac{2}{T_d} \left(\frac{1 - z^{-1}}{1 + z^{-1}} \right) \longrightarrow H(z) = H_c \left(\frac{2}{T_d} \left(\frac{1 - z^{-1}}{1 + z^{-1}} \right) \right)$$

Rational behind bilinear transformation

• Recall $H_c(s) = \int_{-\infty}^{\infty} h(t)e^{-st}dt$ and $H(z) = \sum_{n=-\infty}^{\infty} h[n]z^{-n}$

$$z = e^{sT}$$

$$T: \text{ numerical integration step size of the trapezoidal rule}$$

$$s = \frac{1}{T} \ln(z)$$
Series based on area hyperbolic tangent function
$$= \frac{2}{T} \left[\frac{z-1}{z+1} + \frac{1}{3} \left(\frac{z-1}{z+1} \right)^3 + \frac{1}{5} \left(\frac{z-1}{z+1} \right)^5 + \cdots \right]$$

$$\approx \frac{2}{T} \frac{z-1}{z+1}$$

$$= 2 \cdot 1 - z^{-1}$$

Bilinear transformation - concept

• Given $s = \sigma + j\Omega$

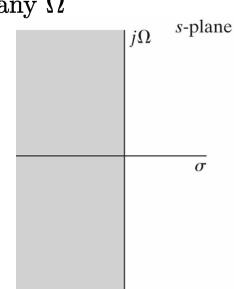
$$z = \frac{1 + (T_d/2)s}{1 - (T_d/2)s} = \frac{1 + \sigma T_d/2 + j\Omega T_d/2}{1 - \sigma T_d/2 - j\Omega T_d/2}$$

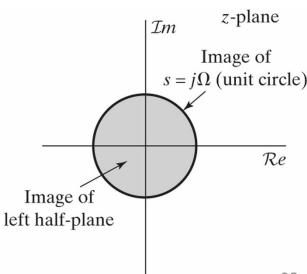
$$+ \text{ If } \sigma < 0, \quad |z| < 1 \text{ for any } \Omega$$

+ If
$$\sigma > 0$$
, $|z| > 1$ for any Ω

• Given $s=j\Omega$ $z=\frac{1+j\Omega T_d/2}{1-j\Omega T_d/2}$

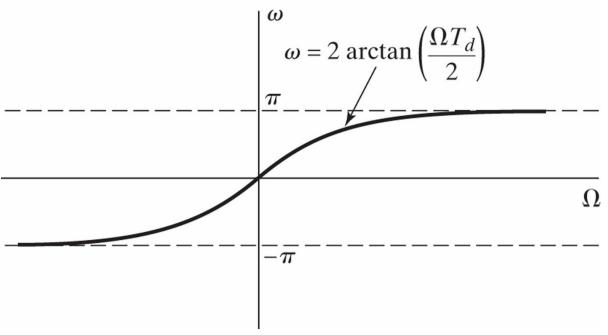
$$\rightarrow$$
 |z|=1 for any s





Bilinear transformation – frequency relationship

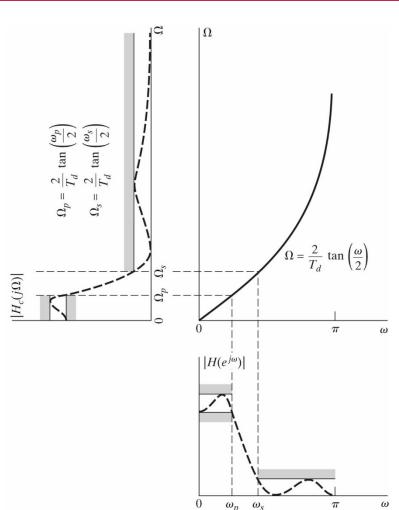
•
$$\Omega = \frac{2}{T_d} \tan(\omega/2), \quad \omega = 2 \arctan(\Omega T_d/2)$$



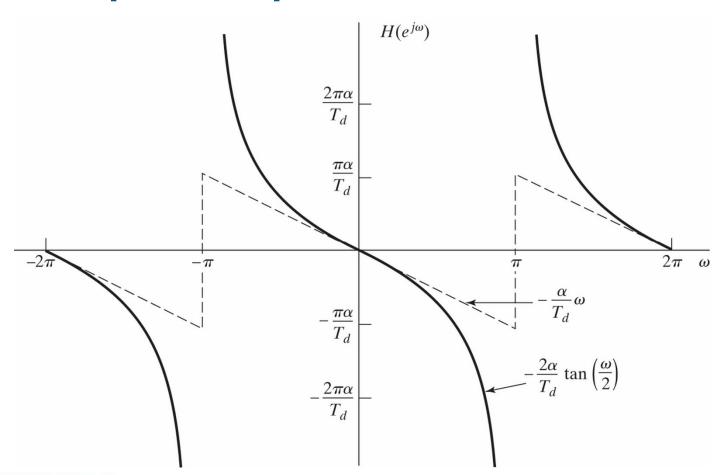
Frequency warping

Bilinear transformation

- No problem of aliasing compared to impulse invariance method
 - → Good for highpass filter design
- ◆ There exists the nonlinear compression of the frequency axis
 - → Suitable for piecewise-constant magnitude response filters
 - Linear phase analog filters may lose linear phase property after transformation



Effect on phase response



Impulse invariance vs. bilinear transformation

- Bilinear transformation
 - → No aliasing effect
 - → Not good for preserving phase response
- Impulse invariance
 - Aliasing happens due to sampling
 - → Possible to preserve linear phase of analog filter
 - Suitable to differentiator that requires linear phase

Bilinear transformation with Butterworth filter

• Specifications:
$$0.89125 \le |H(e^{j\omega})| \le 1$$
, $0 \le |\omega| \le 0.2\pi$ $|H(e^{j\omega})| \le 0.17783$, $0.3\pi \le |\omega| \le \pi$

Transformed analog specifications

$$0.89125 \le |H_c(j\Omega)| \le 1, \quad 0 \le |\Omega| \le \frac{2}{T_d} \tan\left(\frac{0.2\pi}{2}\right)$$
$$|H_c(j\Omega)| \le 0.17783, \quad \frac{2}{T_d} \tan\left(\frac{0.3\pi}{2}\right) \le |\Omega| \le \infty$$

Due to monotonicity of Butterworth filter

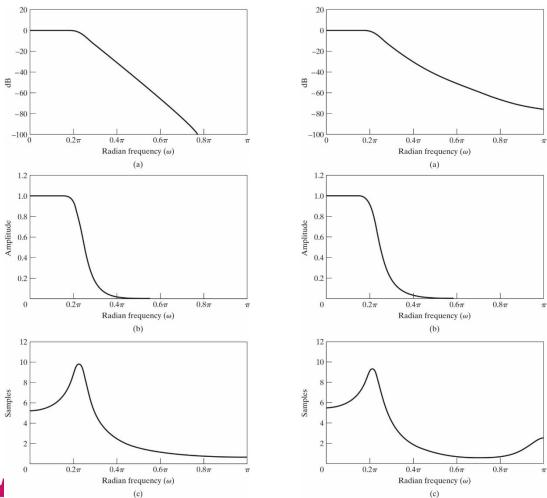
$$|H_c(j2\tan(0.1\pi))| \ge 0.89125, |H_c(j2\tan(0.15\pi))| \le 0.017783$$

Bilinear transformation with Butterworth filter

- lacktriangle Using similar approach as in impulse invariance method, we get N=5.305
- Let $N=6,~\Omega_c=0.766,$ which now satisfies the stopband specification $|H_c(j2\tan(0.15\pi))| \leq 017783$
- This is reasonable for bilinear transformation due to lack of aliasing
 Possible to have the desired stopband edge
- lacktriangle Derive stable system function $H_c(s)$ and apply bilinear transformation

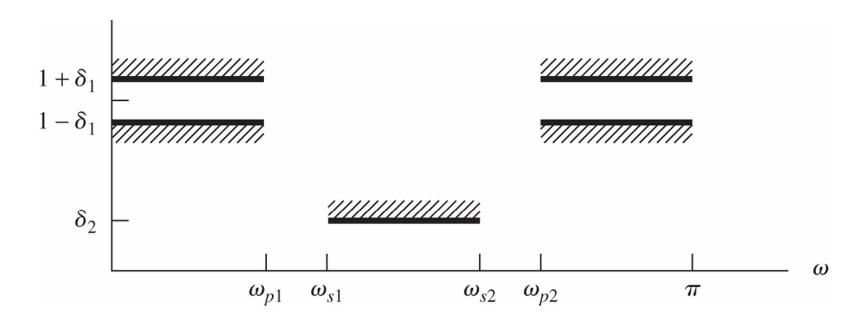
$$s = \frac{2}{T_d} \left(\frac{1 - z^{-1}}{1 + z^{-1}} \right)$$

Impulse invariance vs. bilinear transformation



Frequency transformation of lowpass IIR filter

- So far, we have focused on lowpass IIR filter
- How can we implement general bandpass (multiband) filters?

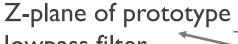


Possible approaches

- ◆ Transform from analog multiband filter
 - ★ Acceptable only with bilinear transformation
 - → Impulse invariance suffers from aliasing
 - → Hard to implement highpass (or multiband) filters
- Transform from discrete-time lowpass filter
 - → Works for both impulse invariance and bilinear transformation

Transformation table

TRANSFORMATIONS FROM A LOWPASS DIGITAL FILTER PROTOTYPE OF CUTOFF FREQUENCY θ_D TO HIGHPASS, BANDPASS, AND BANDSTOP FILTERS

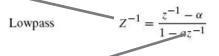


Highpass

Transformations

Associated Design Formulas

lowpass filter



z-plane of desired filter

$$Z^{-1} = -\frac{z^{-1} + \alpha}{1 + \alpha z^{-1}}$$

$$Z^{-1} = -\frac{z^{-1} + \alpha z^{-1}}{1 + \alpha z^{-1}}$$

Bandpass
$$Z^{-1} = -\frac{z^{-2} - \frac{2\alpha k}{k+1} z^{-1} + \frac{k-1}{k+1}}{\frac{k-1}{k+1} z^{-2} - \frac{2\alpha k}{k+1} z^{-1} + 1} \qquad \qquad k = \cot\left(\frac{\omega_{p2} - \omega_{p1}}{2}\right) \tan\left(\frac{\theta_{p}}{2}\right)$$

pass
$$Z^{-1} = -\frac{z^{-2} - \frac{2\alpha k}{k+1}z^{-1} + \frac{k-1}{k+1}}{\frac{k-1}{k+1}z^{-2} - \frac{2\alpha k}{k+1}z^{-1} + 1}$$

Bandstop
$$Z^{-1} = \frac{z^{-2} - \frac{2\alpha}{1+k}z^{-1} + \frac{1-k}{1+k}}{\frac{1-k}{1+k}z^{-2} - \frac{2\alpha}{1+k}z^{-1} + 1}$$

$$\alpha = \frac{\sin\left(\frac{\theta_p - \omega_p}{2}\right)}{\sin\left(\frac{\theta_p + \omega_p}{2}\right)}$$

 ω_p = desired cutoff frequency

$$\alpha = -\frac{\cos\left(\frac{\theta_p + \omega_p}{2}\right)}{\cos\left(\frac{\theta_p - \omega_p}{2}\right)}$$

 ω_p = desired cutoff frequency

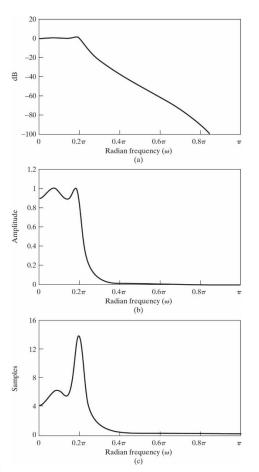
$$\alpha = \frac{\cos\left(\frac{\omega_{p2} + \omega_{p1}}{2}\right)}{\cos\left(\frac{\omega_{p2} - \omega_{p1}}{2}\right)}$$
$$\cot\left(\frac{\omega_{p2} - \omega_{p1}}{2}\right)\tan\left(\frac{\theta_{p}}{2}\right)$$

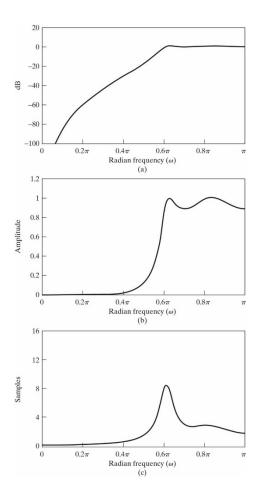
 ω_{n1} = desired lower cutoff frequency ω_{p2} = desired upper cutoff frequency

$$Z^{-1} = \frac{z^{-2} - \frac{2\alpha}{1+k}z^{-1} + \frac{1-k}{1+k}}{\frac{1-k}{1+k}z^{-2} - \frac{2\alpha}{1+k}z^{-1} + 1} \qquad \qquad k = \tan\left(\frac{\omega_{p2} - \omega_{p1}}{2}\right) \tan\left(\frac{\theta_p}{2}\right)$$

 ω_{n1} = desired lower cutoff frequency ω_{p2} = desired upper cutoff frequency

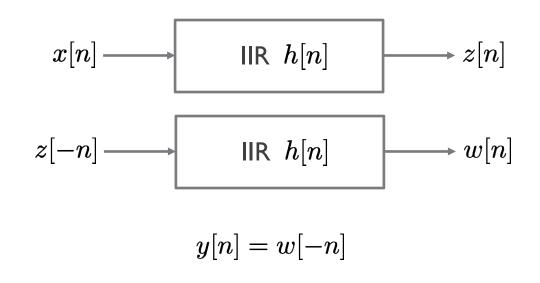
Lowpass to highpass filter transformation





IIR filter with linear phase

- ◆ IIR filters generally have nonlinear phases
- ◆ Possible to have linear phase IIR filters for non real-time applications



Frequency-domain analysis

$$Z(e^{j\omega}) = H(e^{j\omega})X(e^{j\omega})$$

$$W(e^{j\omega}) = H(e^{j\omega})Z^*(e^{j\omega})$$

$$= H(e^{j\omega})H^*(e^{j\omega})X^*(e^{j\omega})$$

$$= |H(e^{j\omega})|^2 X^*(e^{j\omega})$$

• Since y[n] = w[-n]

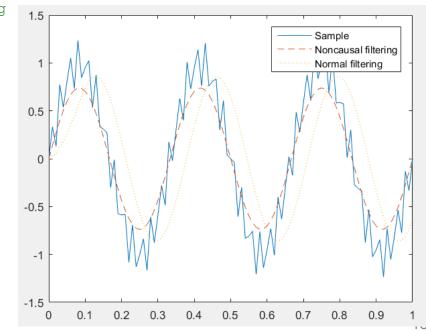
$$Y(e^{j\omega}) = W^*(e^{j\omega}) = |H(e^{j\omega})|^2 X(e^{j\omega})$$

Real number - no phase distortion at all!

Matlab example

```
% Linear phase IIR filter example from Mathworks.com
fs = 100;
t = 0:1/fs:1;
x = \sin(2*pi*t*3) + .25*\sin(2*pi*t*40);
b = ones(1,10)/10;
v = filtfilt(b,1,x); % Noncausal filtering
```

- % 10 point averaging filter
- % Normal filtering



yy = filter(b, 1, x);

plot(t,x,t,y,'--',t,yy,':')

FIR Filter Design

FIR filter design

Design problem: FIR system function

$$H(z) = \sum_{k=0}^{M} b_k z^{-k}$$

$$h[n] = \begin{cases} b_n, & 0 \le n \le M \\ 0, & \text{otherwise} \end{cases}$$

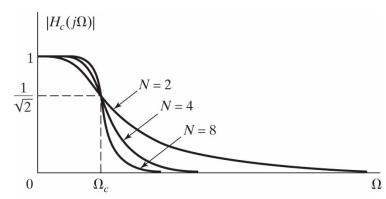
- Need to find
 - Degree M
 - igspace Filter coefficients b_n (or h[n]) for $0 \le n \le M$ to approximate the desired frequency response

Lowpass filter as an example

lacktriangle Ideal lowpass filter $H_{lp}(e^{j\omega})=egin{cases} 1, & |\omega|<\omega_c \ 0, & \omega_c<\omega\leq\pi \end{cases}$

$$h[n] = \frac{\sin \omega_c n}{\pi n}, \quad -\infty < n < \infty$$

Discrete-time IIR filter: transform from continuous-time IIR lowpass filter



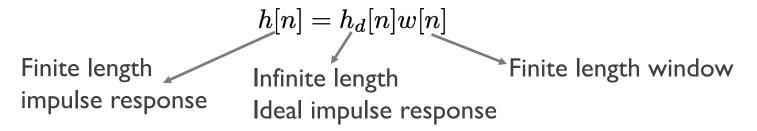
$$|H_c(j\Omega)|^2 = \frac{1}{1 + (\Omega/\Omega_c)^{2N}}$$

Get discrete-time filter using either impulse invariance or bilinear transformation

• How to get FIR filter? h[n] is non-causal and infinite!

Design of FIR filter by windowing

- Most straightforward approach
 - → Truncate the ideal impulse response by windowing (to have finite length) and do time shifting (to make it causal)



Use rectangular window for simple truncation

$$w[n] = \begin{cases} 1, & 0 \le n \le M \\ 0, & \text{otherwise} \end{cases}$$

Lowpass filter example

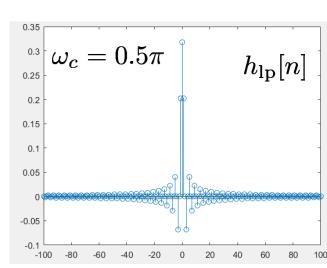
◆ Ideal lowpass filter with zero delay

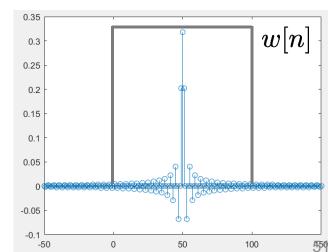
Ideal lowpass filter with delay

$$H_{\mathrm{lp}}(e^{j\omega}) = egin{cases} e^{-j\omega n_d}, & |\omega| < \omega_c \ 0, & \omega_c < |\omega| \le \pi \end{cases}$$
 $h_{\mathrm{lp}}[n] = rac{\sin \omega_c (n - n_d)}{\pi (n - n_d)}, & -\infty < n < \infty \end{cases}$

Ideal lowpass filter with delay and truncation

$$h_{
m lp}[n] = rac{\sin \omega_c (n - n_d)}{\pi (n - n_d)}, \quad -n_1 < n < n_2$$

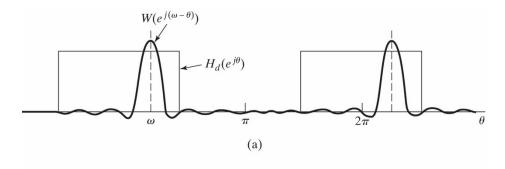


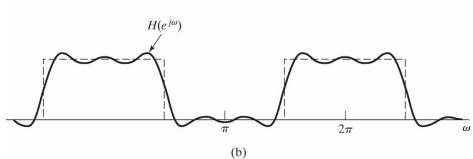


Frequency-domain representation

From modulation (or windowing) theorem (2.9.7)

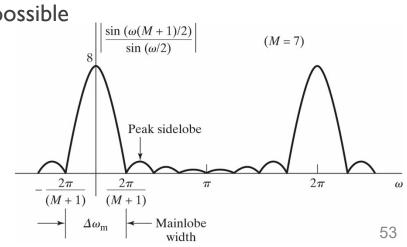
$$H(e^{j\omega}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} H_d(e^{j\omega}) W(e^{j(\omega-\theta)}) d\theta$$





Tradeoff relationship

- If w[n] = 1 for all n, no truncation
 - \rightarrow $W(e^{j\omega})$ becomes a periodic impulse train with period 2π
 - $\rightarrow H(e^{j\omega}) = H_d(e^{j\omega})$
- ◆ How to choose the window size?
 - + As short as possible to minimize implementation computation
 - $igoplus Have W(e^{j\omega})$ like an impulse as much as possible
 - → Requires long window size
- Abrupt change in window
 - → More ripples in frequency-domain



- Check Section 7.5.1
 - → Rectangular
 - → Bartlett (triangular)
 - **→** Hann
 - → Hamming
 - + Blackman

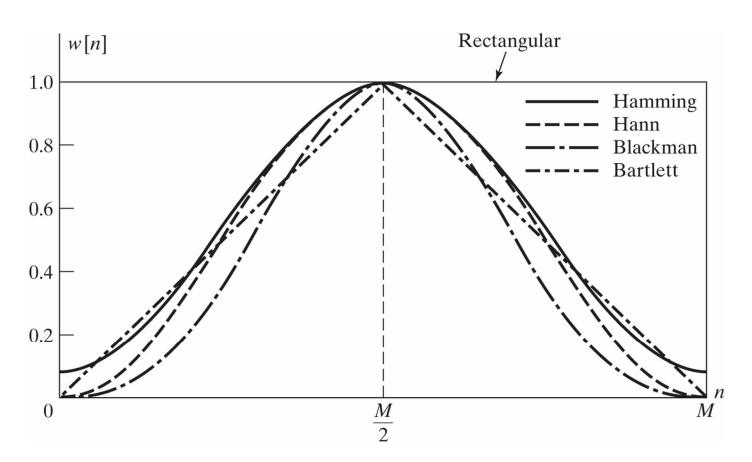


Figure 7.30 Fourier transforms (log magnitude) of windows of Figure 7.29 with M = 50. (a) Rectangular. (b) Bartlett.

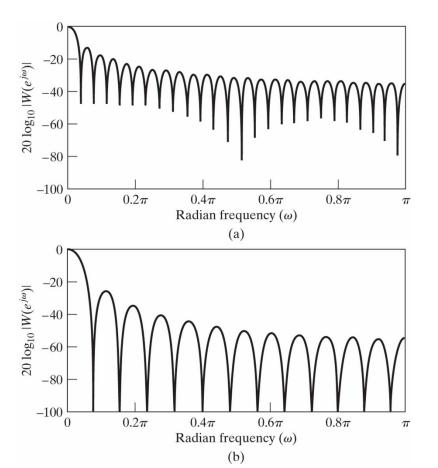
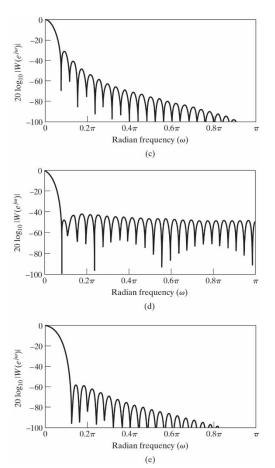


Figure 7.30 (continued) (c) Hann. (d) Hamming. (e) Blackman.

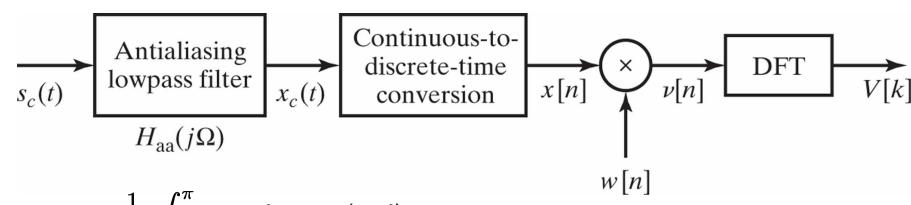


Comparison of standard windows

TABLE 7.2 COMPARISON OF COMMONLY USED WINDOWS

Type of Window	Peak Side-Lobe Amplitude (Relative)	Approximate Width of Main Lobe	Peak Approximation Error, 20 log ₁₀ δ (dB)	Equivalent Kaiser Window, β	Transition Width of Equivalent Kaiser Window
Rectangular	-13	$4\pi/(M+1)$	-21	0	$1.81\pi/M$
Bartlett	-25	$8\pi/M$	-25	1.33	$2.37\pi/M$
Hann	-31	$8\pi/M$	-44	3.86	$5.01\pi/M$
Hamming	-41	$8\pi/M$	-53	4.86	$6.27\pi/M$
Blackman	-57	$12\pi/M$	-74	7.04	$9.19\pi/M$

Processing steps of Fourier analysis



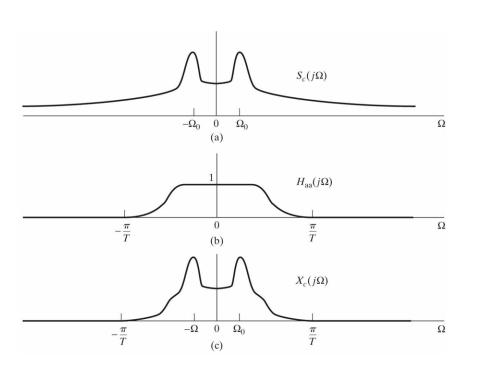
$$V(e^{j\omega}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\theta}) W(e^{j(\omega-\theta)}) d\theta$$

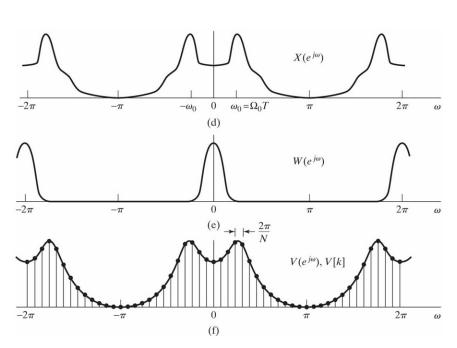
$$V[k]=\sum_{n=0}^{N-1}v[n]e^{-j(2\pi/N)kn},\quad k=0,1,\dots,N-1$$
 The k-th DFT frequency $=V(e^{j\omega})\mid_{\omega=2\pi k/N}$

POSTECH

Corresponding continuous-time frequency $\Omega_k = \frac{2\pi R}{NR}$

Illustration





DFT analysis of sinusoidal signals

$$s_c(t) = A_0 \cos(\Omega_0 t + \theta_0) + A_1 \cos(\Omega_1 t + \theta_1), \quad -\infty < t < \infty$$

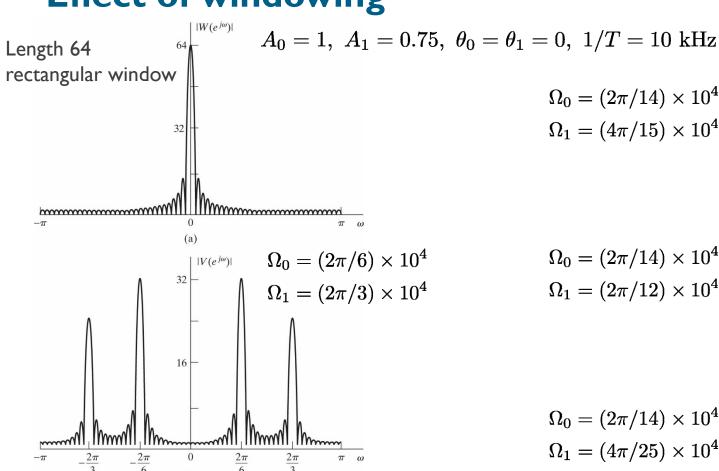
$$x[n] = A_0 \cos(\omega_0 n + \theta_0) + A_1 \cos(\omega_1 n + \theta_1), \quad -\infty < n < \infty$$

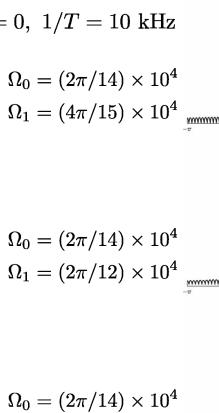
$$v[n] = A_0 w[n] \cos(\omega_0 n + \theta_0) + A_1 w[n] \cos(\omega_1 n + \theta_1)$$

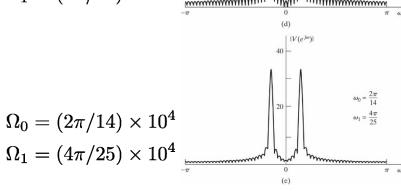
$$=\frac{A_0}{2}w[n]e^{j\theta_0}e^{j\omega_0n}+\frac{A_0}{2}w[n]e^{-j\theta_0}e^{-j\omega_0n}+\frac{A_1}{2}w[n]e^{j\theta_1}e^{j\omega_1n}+\frac{A_1}{2}w[n]e^{-j\theta_1}e^{-j\omega_1n}$$

$$V(e^{j\omega})=\frac{A_0}{2}e^{j\theta_0}W(e^{j(\omega-\omega_0)})+\frac{A_0}{2}e^{-j\theta_0}W(e^{j(\omega+\omega_0)})+\frac{A_1}{2}e^{j\theta_1}W(e^{j(\omega-\omega_1)})+\frac{A_1}{2}e^{-j\theta_1}W(e^{j(\omega+\omega_1)})$$

Effect of windowing





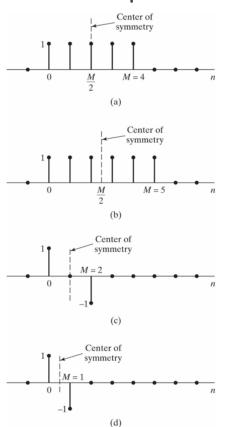


Effect of windowing

- ◆ Two primary effects
 - → Reduced resolution for close frequencies
 - → Related to width of main lobe
 - → Leakage from one frequency component to another
 - → Related to relative amplitude ratio of main lobe to side lobes
- Need to carefully select window depending on applications

Generalized linear phase FIR filter by windowing

- Recall four classes of FIR systems with generalized linear-phase
 - → Type I
 - Symmetric: h[n] = h[M-n]
 - M even
 - ◆ Type II
 - Symmetric: h[n] = h[M-n]
 - M odd
 - ★ Type III
 - Antisymmetric: h[n] = -h[M-n]
 - M even
 - → Type IV
 - Antisymmetric: h[n] = -h[M-n]
 - M odd



Generalized linear phase FIR filter by windowing

- Often aim at designing a causal system with a generalized linear phase
 - → Stability is not a problem with FIR systems
- With (anti-)symmetric (possibly infinite length) impulse response,

$$h_d[M-n] = h_d[n]$$

Symmetric at $M/2$

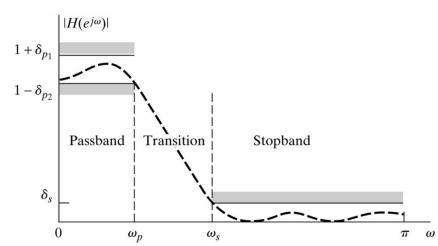
choose windows being symmetric at M/2

$$w[n] = \begin{cases} w[M-n], & 0 \le n \le M \\ 0, & \text{otherwise} \end{cases}$$

- lacktriangle Truncated filter $h[n] = h_d[n]w[n]$ still (anti-)symmetric
 - → Generalized linear phase!!!

FIR filter design procedure

- Specifications to meet
 - ullet Transition bandwidth: $\triangle \omega = \omega_s \omega_p$
 - ullet Ripple levels: $\delta_s,\ \delta_p$
- Window design method
 - Choose window shape
 - → Adjust window length M
 - → One parameter to adjust
- Need to perform trial and error
 - → Not a good method



Kaiser window

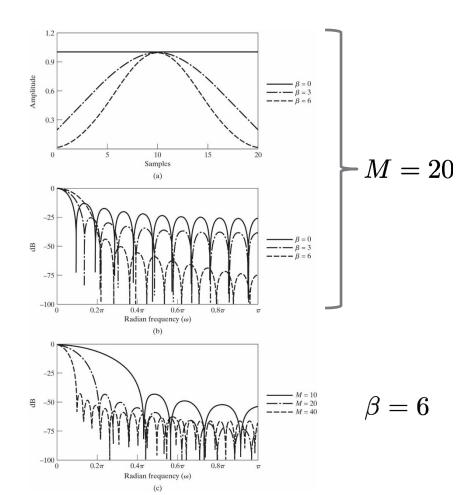
- Formalization of window design method
 - ♦ No need for trial and error
 - + Easy way to find the trade-off between the main-lobe width and side-lobe area
 - lacktriangle Design with two parameters: M and β
 - → Can control the tradeoff between side-lobe amplitude and main-lobe width
 - This was not possible for previous windows
- Kaiser window expression Zeroth-order Bessel function of the first kind

$$w[n] = \begin{cases} I_0[\beta(1 - [(n - \alpha)/\alpha]^2)^{1/2}]/I_0(\beta), & 0 \le n \le M \\ 0, & \text{otherwise} \end{cases}$$

with
$$\alpha = M/2$$
 and $\beta \ge 0$

Kaiser window

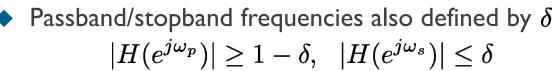
lacktriangle Becomes rectangular window when eta=0



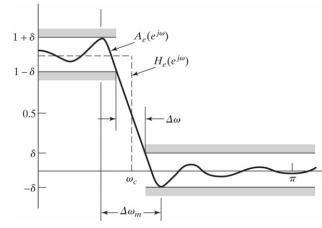
Design FIR filter by Kaiser window

- lacktriangle Calculate M and eta to meet the filter specifications
 - lacktriangle The peak approximation error δ is determined by eta
- Define $A = -20 \log_{10} \delta$

$$\beta = \begin{cases} 0.1102(A - 8.7), & A > 50 \\ 0.5842(A - 21)^{0.4} + 0.07886(A - 21), & 21 \le A \le 50 \\ 0, & A < 21 \end{cases}$$



- igspace Transition width becomes $\triangle \omega = \omega_s \omega_p$
- Possible to show $M = \frac{A-8}{2.285 \triangle \omega}$ to satisfy the specifications



Comparison of standard windows

TABLE 7.2 COMPARISON OF COMMONLY USED WINDOWS

Type of Window	Peak Side-Lobe Amplitude (Relative)	Approximate Width of Main Lobe	Peak Approximation Error, 20 log ₁₀ δ (dB)	Equivalent Kaiser Window, β	Transition Width of Equivalent Kaiser Window
Rectangular	-13	$4\pi/(M+1)$	-21	0	$1.81\pi/M$
Bartlett	-25	$8\pi/M$	-25	1.33	$2.37\pi/M$
Hann	-31	$8\pi/M$	-44	3.86	$5.01\pi/M$
Hamming	-41	$8\pi/M$	-53	4.86	$6.27\pi/M$
Blackman	-57	$12\pi/M$	-74	7.04	$9.19\pi/M$

Matlab examples

```
% Butterworth filter example
fc = 300; % cutoff frequency (in Hz)
fs = 1000; % sampling frequency (in Hz)
[b,a] = butter(6,fc/(fs/2));
freqz(b,a)
dataIn = randn(1000,1);
dataOut = filter(b,a,dataIn);
figure (2)
plot(1:1000, dataIn, 1:1000, dataOut, 'r')
legend('Random samples', 'Filtered samples')
```


Matlab examples

```
% designfilt example

lpFilt = designfilt('lowpassfir','PassbandFrequency',0.25, ...
'StopbandFrequency',0.35,'PassbandRipple',0.5, ...
'StopbandAttenuation',65,'DesignMethod','kaiserwin');
fvtool(lpFilt)
dataIn = rand(1000,1);
dataOut = filter(lpFilt,dataIn);
plot(1:1000,dataIn,1:1000,dataOut,'r')
```

