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Course at glance

Discrete-time
signals and systems
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representation reconstruction tructure 8
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Two-stages representation

4 Mathematically
+ Impulse train modulator

+ Conversion of the impulse train
into a sequence
oo

s(t) = Z o(t — nT)

it

C/D converter

Conversion from
impulse train
to discrete-time
sequence

Z z:(t)0(t —nT)

n=—oo

= Z z(nT)o(t —nT)

=27T-T 0 T 2T

t

(b)

A HH?HH

n=—oo N\
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Frequency-domain representation of sampling

¢ Fourier transform of impulse train is also the periodic impulse train

s(t) = i 5(t —nT) <2 S(jQ) = = 38— k)

n—=—oo k=—oc0

¢ Fourier transform of impulse train-modulated signal
F : 1 . .
z5(t) = z(t)s(t) ¢ X, (58) = - Xe(j2) % S

Continuous-variable convolution

XS(jQ) :% Z Xc(j(ﬂ_kﬂs))

k=—o0

POSTE2LCH 4



Close look into Fourier transform of sampled signal

& Recall X,(jQ) = Z X.(5(Q — kQ))

k——oo

+ Consist of periodic repeated copies of X .(j(2)
+ Copies are shifted by integer multiples of sampling frequency {2

Xk : .
Arbitrary bandlimited

X;(j)
/Fourlertransform /\/\ /\ /\/\
T 0, —0g v\

(a) (&~ QN)

[N Y

X,(j€2)
20, = 0 Q, 20, 30, O

(b)
F~6s=> § L=0L_F7% S




Nyquist-Shannon sampling theorem

¢ Given a bandlimited signal x.(t) with

X(jQ) =0 for |2 > Qn

Then x.(t) is uniquely determined by its samples

zn] =x.(nT), n=0,£1,£2,...

¢ () is called Nyquist frequency
¢ 2Qy is called Nyquist (sampling) rate

POSTECH 6



Fourier transform of x[n]

C/D converter

¢ From z.(t) to z[n]

| |

| |

o0 | | |

Conversion from
Tg (t) = E L (nT)5(t — nT) : impulse train } _
x,(1) | x() | t© discrete-time : x[n] = xc(n})
|
|

nN=—oo
| sequence
|

zn] =x.(nT), —oo < n< oo | J

& From X.(jQ) to X (&%)

+ By taking continuous-time Fourier transform

o oo
X.(jQ) = > xe(nT)e 7 = N anle /"
nN——oo nN——oo
oo
+ By taking discrete-time Fourier transform X (/%) = Z z[n]e 74"
n=—o00
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Fourier transform of x[n] (continue)

& Relation between X.(j2) and X (e’*)

Xo(Q) = X () |umar = X(€97) = = D~ Xe(§(Q - kQ))
k=—o00
- 1 = w27k
»xe -7 3 % (i(7-F))

k=—o0

& X(“)is simply a frequency-scaled version of X, (j§) with w = QT
+ It can also be thought as frequency axis normalization
+ Sampling frequency (25 = 27/T = ws =27
+ Sampling frequency always mapped to wg = 27 in DTFT
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Reconstruction
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Requirement for reconstruction

¢ Based on Nyquist sampling theorem, a signal can be exactly recovered
from its samples when

+ The signal is bandlimited X.(j€2) =0 for |Q| > Qu

X.(jQ)
—Chx; O Q

27
+ Sampling frequency is large enough 25 = Il > 20N

+ + knowledge of sampling period to recover the signal
=>» To determine bandwidth of lowpass filter
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Reconstruction steps

¢ (1) Given x[n] and T, form a continuous-time impulse train z(t)

oo
x,(1) -

zs(t) = ; z[n]o(t —nT) (mH/HH

=>» the n-th sample is associated with the impulse at t=nT R ;

® (2) zs(t) is filtered by an ideal lowpass continuous-time filter 1| T1%- g
h.-(t) with frequency response H,.(j{2) TW I H

-4-3-2-101 2 3 4 n
oo

v (t) = Y a[n]h(t —nT)

nN——oo
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Mathematical expression of reconstruction

¢ Assume the cutoff frequency of ideal lowpass filter is

H,(j€)

Qe =Qs/2=n/T

+ Any cutoff frequency works as long as

QNSQCSQS_QN )

1B

¢ Impulse response of the ideal lowpass filter is

h.(t) = sin;:/tj/ﬁT) = sinc(t/T) »

QO

lE

, sin 7w /\
sinc(0) = 2 ~ N N
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Mathematical expression of reconstruction

4 Reconstructed signal becomes

o (t)= Y alnlh(t—nT)= Y x[”]SiﬂE(i;;?%T]

n=—oo n=——oo

=> Is this the same as x. (%) ?

/\/\:([)

(b)

POSTE2LCH 13



Ideal D/C converter in frequency domain

T

H,(jQ)

¢ Recall z,.(t) = i x[nlh(t —nT)
o X)) = Y afnlH,(jQ)e T = H,(jQ) X ()

& X (**1) :frequency-scaled version of X (/) with w = QT

QO

lE

& H.(jN) selects the base period of the periodic X (e’**7") and compensate

for /T scaling from sampling

POSTE2LCH
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Discrete-Time Processing of
Continuous-Time Signals
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Overall block diagram

| Discrete-time
system

C/D converter

Conversion from
impulse train
to discrete-time
xc(t) | xs(t)
| sequence

Convert from

——> sequence to
impulse train

S J B

Sampling
(a)

period T
¢ Overall system is continuous-time processing

Ideal

reconstruction !

filter
H,(j©)

¢ Continuous-time processing of discrete-time signals also possible

POSTE2LCH
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Output signal

4 Necessary conditions
+ The discrete-time system is LTl
+ Continuous-time signal Z.(t) is bandlimited
+ Sampling rate {2, is at or above the Nyquist rate 2{2

¢ If all conditions are satisfied, the output signal becomes

Y, (§Q) = Hem (702) X (5S2) Cutoff frequency of

. ideal lowpass filter
H(JW, Q] < W{ P
0, 2| > /T

where

Heff(jﬂ) — {
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|
| Discrete-time |
" system

|deal lowpass filter in D/C

¢ If z.(t) is bandlimited, i.e., X.(j2) = 0 for || > 7/T,and the sampling
rate is at or above the Nyquist rate

o JH(EM)X (), Q] <7/T
Yo = {o, 9] > /T

18
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Lowpass filtering example

H(e'®)
1
I I
2 -, W, 2m @
(a)
Heff(jﬂ)
1
W, W, Q
T i
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Lowpass filtering example
X.(jQ)

AN

Q Q -
@ " o

X,(j0) = X(e7)

AN A

I
oLl hk
T T T

Y(e/®)

N
D

|
_2m - Qy ™ 2 ) Q
(b) T
| w = QT
1 X(e’®)
7 /T’</ e 7N 1
AN AIN A0 N
-2 T —w, W, QNT T 21T w _ﬁc ﬂ.‘ QO
"y o 2 - Q\T) T T

(c)
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Impulse invariance

|
Continuous-time Discrete-time :
—>| LTIsystem f——— _:—)— C/D »| LTIsystem > D/C : =
x.(1) h.(t), H.(j) v (1) x.(1) | x[n] h(n], H(e'*) y[n] } yr (1) =y (1)
: 4 A |
(a) | T T |
|

Heg () = H.(j€)
(b)

¢ Want to implement the continuous-time impulse response h.(t) using
discrete-time system h|n] or vise versa

¢ How to design h[n] based on h.(?)?
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Impulse invariance

H(ejQT), Q2| < 7/T

& Recall Hog(7Q2) =
eca ff(J) {0, |Q|27T/T

¢ We want to have Heg(j2) = H.(j2)

» H(e5) = Ho(jw/T), |w| <

¢ In time-domain: h\n| = Th.(nT)

e =17 35 a5 (7-°7))

k=—o00 Because H.(j2) =0, | >=n/T
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Impulse invariance example

4 How to obtain an ideal lowpass discrete-time filter with cutoff frequency
we < 7 from a continuous-time ideal lowpass filter?

i (jQ) _ 1, |Q| < Q. i) . (t) _ Sil’l(ﬂct)
i 0, 9[>, ‘ mt

¢ Define the corresponding discrete-time impulse response as

sin(Q2.nT)  sin(wen)

W?y h

: 1, w| < we
|deal discrete-time lowpass filter of H (e’*) = { ]

hin| =Th.(nT) =T with w. = Q. T

0, we<|wl <
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Changing Sampling Rate Using
Discrete-Time Processing
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Resampling

¢ Sampling with sampling period T: z[n| = z.(nT)

¢ Often necessary to change the sampling rate of a discrete-time signal
x1|n] = x.(nTy), with T'# T}
+ Resizing digital images
+ Video/audio conversion
¢ Direct approach is to reconstruct z.(t) from z|n| and resample with
sampling period T}
+ Not a practical approach due to non-ideal hardware

4+ Near-ideal filters are $$$$$$$

¢ Can we change the sampling rate by only dealing with discrete-time
operations? YES!
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Downsampling
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Decreasing sampling rate by integer factor

> Y M >~
x[n] xX4ln] =x[nM]
Sampling Sampling
period T period Ty = MT

¢ Usually called “downsampling”

¢ Sampling rate can be reduced by “sampling” the original sampled sequence
+ Original sampled sequence x[n] = x.(nT)
+ New “sampled” sequence z4[n| = x[nM]| = z.(nMT)
+ Keep one sample out of every M samples

=>» Operation called “compressor”

¢ The new sequence Z4|n] is identical to the sequence obtained from (1)
with the sampling period 13 = MT
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Is reconstruction possible?

¢ Original sampling rate Q3 = 27 /T

& If X.(502) =0 for || > Qn, 2(t) can be reconstructed from zq[n] if
/Ty =m/(MT) > Qn WP 21/Ty > 20y

¢ Sampling rate can be reduced to 1/M without aliasing if the original
sampling rate T is at least M times the Nyquist rate
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Frequency-domain representation

& DTFT of z[n] = x.(nT) is

- £ G-

k=—oc

& DTFT of z4[n] = x[nM] = x.(nTy) with Ty = MT

-5 2 xp (%)
Sl
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Frequency-domain representation

® Wecanwrite =1+ kM for —c0o<k<owand0<i< M -1

w1 £ < ()

r=——00

——Z{ > w7 )]

k=—o0

¢ Using DTFT of x[n]

. . 1 — w—2m  2rk
jlw—2mi) /M _ = . _oann
S i (- 7))
M—
& We have X, (e/%) = Z (ef(w=2mi)/ M)y
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Example - no aliasing

XU

(0g = 4Q) N case

Desired sequence Zq[n]

Y]

X, (i) = L [X(ei?) + X(ei(w-2m2)]
(M=2) 2
(a) 1

X,(jQ) = X(e7) E il e il Y
1

27 - T 2 w=0T,

/\ (d)

|
2m 0 Xd(ej“Td)
T

(b)
Original sequence z[n| |X(*)
A _ 2w 2w 4w _ 2w =L
T 7 % B T T
/\ /\ (e)
! | 1 J
27 -7 -y wy =0T = 2m w=0T
(c)
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Example - with aliasing
Prefiltering to avoid aliasing

H (e)
K
1 1
| | | 1

-0y Qy 0 =2 —1r T 27 w=0T
(a)
X((’-j”)

(@
Original sequence z|n]

~ |

T 27 w =0T 27 -1 w=0T

=0T,

| 1 | | | | |
27 _ 3w -w T 3w 2w w=0T, 27 -
2 2
(c)

Aliasing occurs! To avoid aliasing, wy M < 7
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A general downsampling system

Lowpass filter
» Gain=1 |—— \ M - -
x[n] Cutoff = 7/M | X[n] X, [n] = X[nM]
Sampling Sampling Sampling
period T period T period 7, =MT

¢ Lowpass filter to avoid aliasing

¢ The system also called “decimator” (in general,“downsampling”)
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Efficient implementation of downsampling

Lowpass filter

> Gain=1 '~_>
x[n] Cutoff = 7/M | x[n]
Sampling hin] Sampling
period TC>o period T
> hlK]zn — k]
k=—o00

o0

7 Z hlklz[Mn — Z

8
Q.
=3

|

oo

k=—o0 £=0 k/'=-—

M—1
=Y > h[kM + {x[M(n -

POSTECH

M

>
X4[n] =x[nM]

M—-1

£=0

Sampling
period 7, =MT

Z Wk M + 0z[Mn — (K'M + 0)]

h{Mn + ] x z[Mn — (]

34



Block diagram representation

x| Mn — 1] —— h|Mn + 1]

z[Mn — (M —1)] —— h[Mn+ M — 1]
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