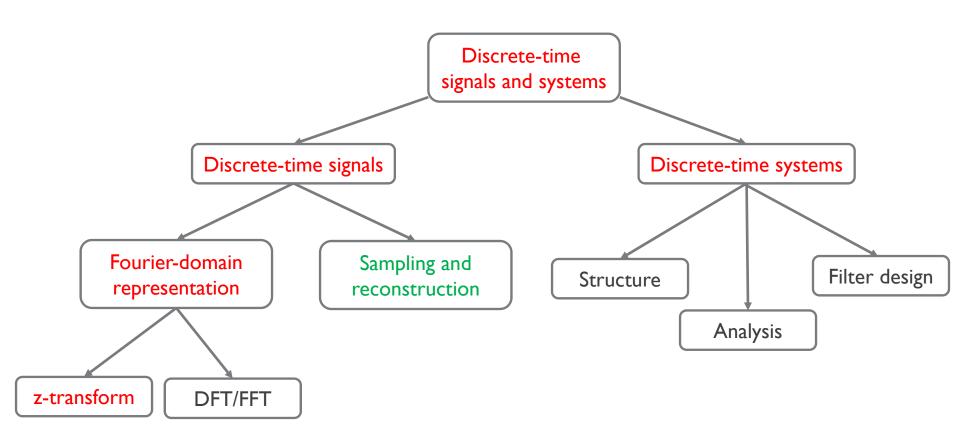


Digital Signal Processing

POSTECH

Department of Electrical Engineering Junil Choi

Course at glance



Two-stages representation

- Mathematically
 - → Impulse train modulator
 - → Conversion of the impulse train into a sequence

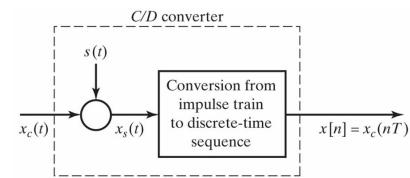
$$s(t) = \sum_{n = -\infty} \delta(t - nT)$$

$$x_s(t) = x_c(t)s(t)$$

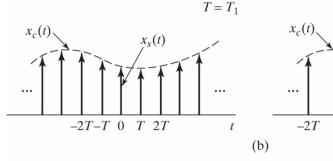
$$= \sum_{n=-\infty} x_c(t)\delta(t - nT)$$

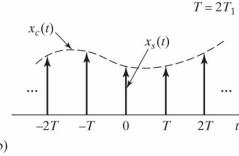
$$= \sum_{c} x_c(nT)\delta(t - nT)$$

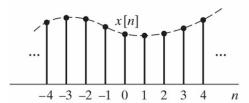
 $x[n] = x_c(nT)$

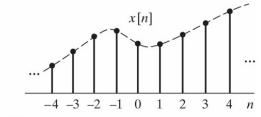


(c)









Frequency-domain representation of sampling

Fourier transform of impulse train is also the periodic impulse train

$$s(t) = \sum_{n = -\infty}^{\infty} \delta(t - nT) \stackrel{\mathcal{F}}{\longleftrightarrow} S(j\Omega) = \frac{2\pi}{T} \sum_{k = -\infty}^{\infty} \delta(\Omega - k\Omega_s) \Omega_s = \frac{2\pi}{T}$$

Fourier transform of impulse train-modulated signal

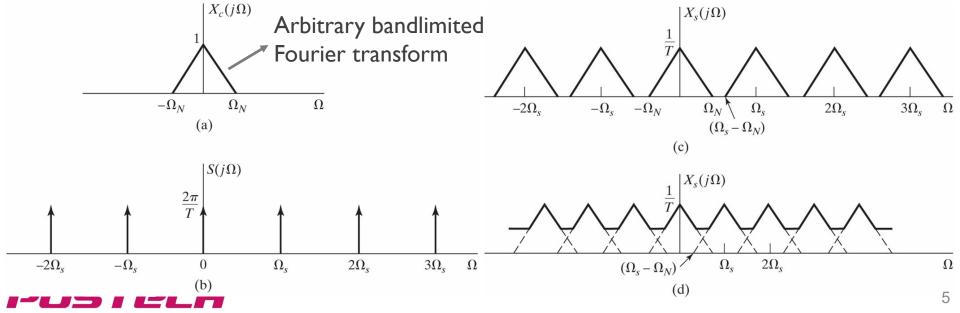
$$x_s(t) = x_c(t)s(t) \stackrel{\mathcal{F}}{\longleftrightarrow} X_s(j\Omega) = \frac{1}{2\pi}X_c(j\Omega) * S(j\Omega)$$

Continuous-variable convolution

$$X_s(j\Omega) = \frac{1}{T} \sum_{k=0}^{\infty} X_c(j(\Omega - k\Omega_s))$$

Close look into Fourier transform of sampled signal

- lacktriangledown Recall $X_s(j\Omega) = rac{1}{T} \sum_{s=0}^{\infty} X_c(j(\Omega-k\Omega_s))$
 - lacktriangle Consist of periodic repeated copies of $X_c(j\Omega)$
 - lacktriangle Copies are shifted by integer multiples of sampling frequency Ω_s



Nyquist-Shannon sampling theorem

lacktriangle Given a bandlimited signal $x_c(t)$ with

$$X_c(j\Omega) = 0$$
 for $|\Omega| \ge \Omega_N$

Then $x_c(t)$ is uniquely determined by its samples

$$x[n] = x_c(nT), \ n = 0, \pm 1, \pm 2, \ldots$$
 if $\Omega_s = \frac{2\pi}{T} \geq 2\Omega_N$

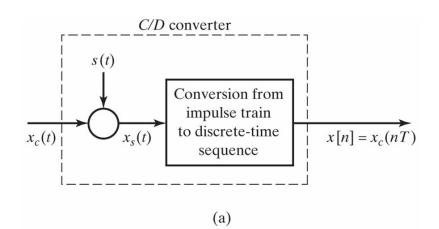
- Ω_N is called Nyquist frequency
- lacktriangle $2\Omega_N$ is called Nyquist (sampling) rate

Fourier transform of x[n]

• From $x_c(t)$ to x[n]

$$x_s(t) = \sum_{n = -\infty}^{\infty} x_c(nT)\delta(t - nT)$$

$$x[n] = x_c(nT), -\infty < n < \infty$$



- From $X_c(j\Omega)$ to $X(e^{j\omega})$
 - → By taking continuous-time Fourier transform

$$X_s(j\Omega) = \sum_{n=-\infty}^{\infty} x_c(nT)e^{-j\Omega Tn} = \sum_{n=-\infty}^{\infty} x[n]e^{-j\Omega Tn}$$

+ By taking discrete-time Fourier transform $X(e^{j\omega}) = \sum_{n=-\infty} x[n]e^{-j\omega n}$

Fourier transform of x[n] (continue)

• Relation between $X_c(j\Omega)$ and $X(e^{j\omega})$

$$X_s(j\Omega) = X(e^{j\omega})|_{\omega = \Omega T} = X(e^{j\Omega T}) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X_c(j(\Omega - k\Omega_s))$$

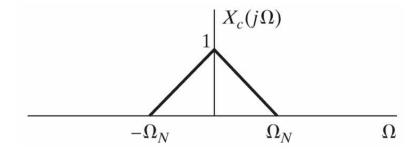
$$X(e^{j\omega}) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X_c \left(j \left(\frac{\omega}{T} - \frac{2\pi k}{T} \right) \right)$$

- $lacktriangleq X(e^{j\omega})$ is simply a frequency-scaled version of $X_s(j\Omega)$ with $\omega=\Omega T$
 - → It can also be thought as frequency axis normalization
 - lacktriangle Sampling frequency $\Omega_s = 2\pi/T$ $\rightarrow \omega_s = 2\pi$
 - lacktriangle Sampling frequency always mapped to $\omega_s=2\pi$ in DTFT

Reconstruction

Requirement for reconstruction

- Based on Nyquist sampling theorem, a signal can be exactly recovered from its samples when
 - lacktriangle The signal is bandlimited $X_c(j\Omega)=0$ for $|\Omega|\geq\Omega_N$

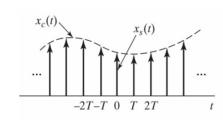


- + Sampling frequency is large enough $\,\Omega_s = \frac{2\pi}{T} \geq 2\Omega_N\,$
- + knowledge of sampling period to recover the signal
 - → To determine bandwidth of lowpass filter

Reconstruction steps

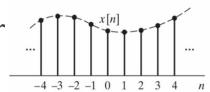
lacktriangle (I) Given x[n] and T, form a continuous-time impulse train $x_s(t)$

$$x_s(t) = \sum_{n = -\infty}^{\infty} x[n]\delta(t - nT)$$



 \rightarrow the n-th sample is associated with the impulse at t=nT

• (2) $x_s(t)$ is filtered by an ideal lowpass continuous-time filter $h_r(t)$ with frequency response $H_r(j\Omega)$



$$x_r(t) = \sum_{n=-\infty}^{\infty} x[n]h(t - nT)$$

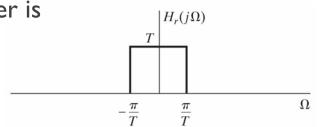
Mathematical expression of reconstruction

Assume the cutoff frequency of ideal lowpass filter is

$$\Omega_c = \Omega_s/2 = \pi/T$$

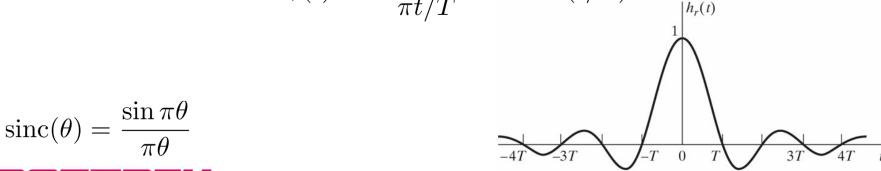
Any cutoff frequency works as long as

$$\Omega_N \le \Omega_c \le \Omega_s - \Omega_N$$



Impulse response of the ideal lowpass filter is

$$h_r(t) = \frac{\sin(\pi t/T)}{\pi t/T} = \operatorname{sinc}(t/T)$$

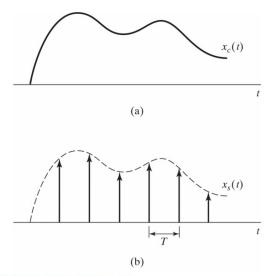


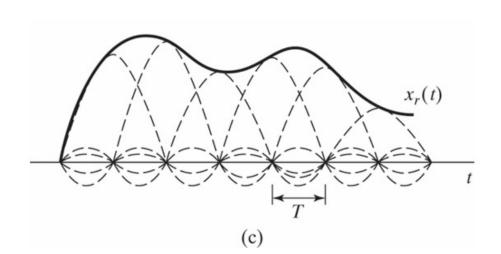
Mathematical expression of reconstruction

Reconstructed signal becomes

$$x_r(t) = \sum_{n=-\infty}^{\infty} x[n]h(t-nT) = \sum_{n=-\infty}^{\infty} x[n] \frac{\sin[\pi(t-nT)/T]}{\pi(t-nT)/T}$$

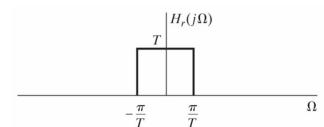
 \rightarrow Is this the same as $x_c(t)$?





Ideal D/C converter in frequency domain

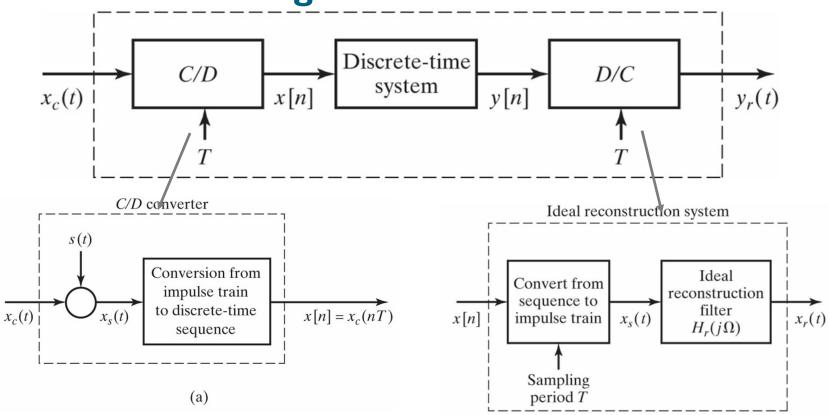
• Recall $x_r(t) = \sum_{n=-\infty}^{\infty} x[n]h(t-nT)$



- $X_r(j\Omega) = \sum_{n=-\infty}^{\infty} x[n]H_r(j\Omega)e^{-j\Omega Tn} = H_r(j\Omega)X(e^{j\Omega T})$
- $lacktriangleq X(e^{j\Omega T})$: frequency-scaled version of $X(e^{j\omega})$ with $\omega=\Omega T$
- $lacktriangledown H_r(j\Omega)$ selects the base period of the periodic $X(e^{j\Omega T})$ and compensate for I/T scaling from sampling

Discrete-Time Processing of Continuous-Time Signals

Overall block diagram



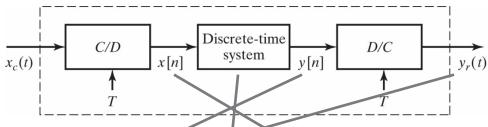
- Overall system is continuous-time processing
- Continuous-time processing of discrete-time signals also possible

Output signal

- Necessary conditions
 - → The discrete-time system is LTI
 - igspace Continuous-time signal $x_c(t)$ is bandlimited
 - lacktriangle Sampling rate Ω_s is at or above the Nyquist rate $2\Omega_N$
- If all conditions are satisfied, the output signal becomes

$$Y_r(j\Omega) = H_{\rm eff}(j\Omega) X_c(j\Omega) \qquad \text{Cutoff frequency of ideal lowpass filter}$$
 where
$$H_{\rm eff}(j\Omega) = \begin{cases} H(e^{j\Omega T}), & |\Omega| < \pi/T \\ 0, & |\Omega| \geq \pi/T \end{cases}$$

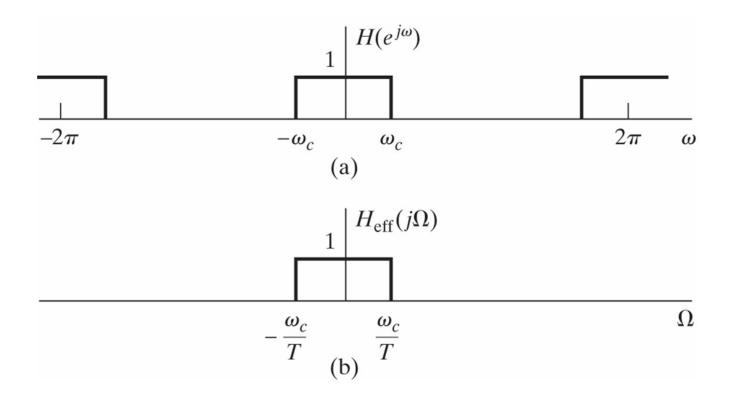
Detailed steps



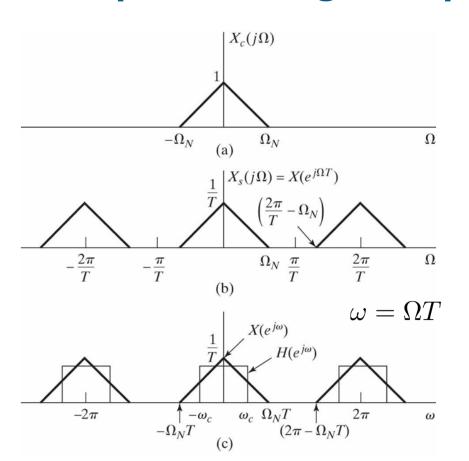
- If the system is LTI: $Y(e^{j\omega}) = H(e^{j\omega})X(e^{j\omega})$
- $X(e^{j\omega}) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X_c \left(j \left(\frac{\omega}{T} \frac{2\pi k}{T} \right) \right)$
- $\bullet \ \, Y_r(j\Omega) = H_r(j\Omega) H(e^{j\Omega T}) \frac{1}{T} \sum_{k=-\infty}^{\infty} X_c \left[j \left(\Omega \frac{2\pi k}{T} \right) \right]$ | Ideal lowpass filter in D/C
- If $x_c(t)$ is bandlimited, i.e., $X_c(j\Omega) = 0$ for $|\Omega| \ge \pi/T$, and the sampling rate is at or above the Nyquist rate

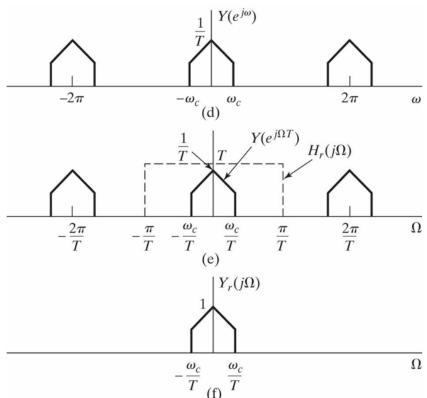
$$Y_r(j\Omega) = \begin{cases} H(e^{j\Omega T}) X_c(j\Omega), & |\Omega| < \pi/T \\ 0, & |\Omega| \ge \pi/T \end{cases}$$

Lowpass filtering example

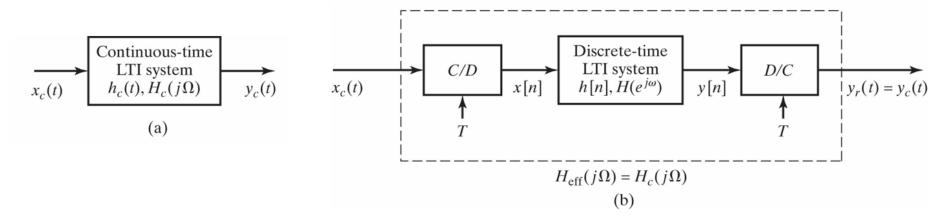


Lowpass filtering example





Impulse invariance



- lacktriangle Want to implement the continuous-time impulse response $h_c(t)$ using discrete-time system h[n] or vise versa
- How to design h[n] based on $h_c(t)$?

Impulse invariance

• Recall
$$H_{\mathrm{eff}}(j\Omega) = \begin{cases} H(e^{j\Omega T}), & |\Omega| < \pi/T \\ 0, & |\Omega| \ge \pi/T \end{cases}$$

• We want to have $H_{\rm eff}(j\Omega) = H_c(j\Omega)$

$$H(e^{j\omega}) = H_c(j\omega/T), \quad |\omega| < \pi$$

• In time-domain: $h[n] = Th_c(nT)$

$$H(e^{j\omega}) = T \frac{1}{T} \sum_{k=-\infty}^{\infty} H_c \left(j \left(\frac{\omega}{T} - \frac{2\pi k}{T} \right) \right)$$
Because $H_c(j\Omega) = 0, \quad |\Omega| \ge \pi/T$

$$= H_c \left(j \frac{\omega}{T} \right), \quad |\omega| < \pi$$

Impulse invariance example

lacktriangle How to obtain an ideal lowpass discrete-time filter with cutoff frequency $\omega_c < \pi$ from a continuous-time ideal lowpass filter?

$$H_c(j\Omega) = \begin{cases} 1, & |\Omega| < \Omega_c \\ 0, & |\Omega| \ge \Omega_c \end{cases} \xrightarrow{\mathcal{F}} h_c(t) = \frac{\sin(\Omega_c t)}{\pi t}$$

Define the corresponding discrete-time impulse response as

$$h[n] = Th_c(nT) = T\frac{\sin(\Omega_c nT)}{\pi nT} = \frac{\sin(\omega_c n)}{\pi n} \text{ with } \omega_c = \Omega_c T$$
 Ideal discrete-time lowpass filter of $H(e^{j\omega}) = \begin{cases} 1, & |\omega| < \omega_c \\ 0, & \omega_c \leq |\omega| \leq \pi \end{cases}$

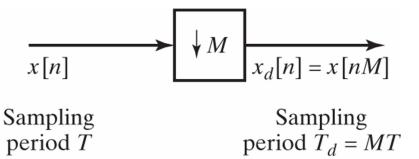
Changing Sampling Rate Using Discrete-Time Processing

Resampling

- Sampling with sampling period T: $x[n] = x_c(nT)$
- Often necessary to change the sampling rate of a discrete-time signal $x_1[n] = x_c(nT_1), \text{ with } T \neq T_1$
 - → Resizing digital images
 - → Video/audio conversion
- lacktriangle Direct approach is to reconstruct $x_c(t)$ from x[n] and resample with sampling period T_1
 - → Not a practical approach due to non-ideal hardware
 - → Near-ideal filters are \$\$\$\$\$\$\$
- Can we change the sampling rate by only dealing with discrete-time operations? YES!

Downsampling

Decreasing sampling rate by integer factor



- Usually called "downsampling"
- ◆ Sampling rate can be reduced by "sampling" the original sampled sequence
 - lacktriangledown Original sampled sequence $x[n] = x_c(nT)$
 - igspace New "sampled" sequence $x_d[n] = x[nM] = x_c(nMT)$
 - ★ Keep one sample out of every M samples
 - → Operation called "compressor"
- The new sequence $x_d[n]$ is identical to the sequence obtained from $x_c(t)$ with the sampling period $T_d = MT$

Is reconstruction possible?

- Original sampling rate $\Omega_s = 2\pi/T$
- If $X_c(j\Omega)=0$ for $|\Omega|\geq\Omega_N,\ x_c(t)$ can be reconstructed from $x_d[n]$ if $\pi/T_d=\pi/(MT)\geq\Omega_N$ $\Rightarrow 2\pi/T_d\geq 2\Omega_N$
- lacktriangle Sampling rate can be reduced to 1/M without aliasing if the original sampling rate T is at least M times the Nyquist rate

Frequency-domain representation

lacktriangle DTFT of $x[n] = x_c(nT)$ is

$$X(e^{j\omega}) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X_c \left[j \left(\frac{\omega}{T} - \frac{2\pi k}{T} \right) \right]$$

• DTFT of $x_d[n] = x[nM] = x_c(nT_d)$ with $T_d = MT$

$$X_d(e^{j\omega}) = \frac{1}{T_d} \sum_{r=-\infty}^{\infty} X_c \left[j \left(\frac{\omega}{T_d} - \frac{2\pi r}{T_d} \right) \right]$$
$$= \frac{1}{MT} \sum_{r=-\infty}^{\infty} X_c \left[j \left(\frac{\omega}{MT} - \frac{2\pi r}{MT} \right) \right]$$

Frequency-domain representation

• We can write r = i + kM for $-\infty < k < \infty$ and $0 \le i \le M - 1$

$$X_d(e^{j\omega}) = \frac{1}{MT} \sum_{r=-\infty}^{\infty} X_c \left[j \left(\frac{\omega}{MT} - \frac{2\pi r}{MT} \right) \right]$$

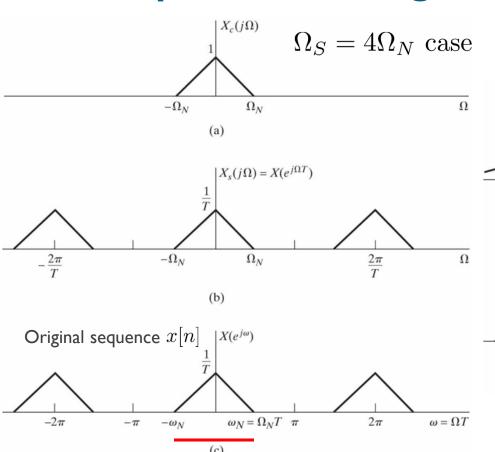
$$= \frac{1}{M} \sum_{i=0}^{M-1} \left\{ \frac{1}{T} \sum_{k=-\infty}^{\infty} X_c \left[j \left(\frac{\omega}{MT} - \frac{2\pi k}{T} - \frac{2\pi i}{MT} \right) \right] \right\}$$

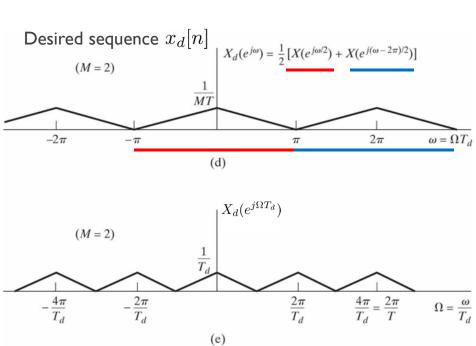
Using DTFT of x[n]

$$X(e^{j(\omega-2\pi i)/M}) = \frac{1}{T} \sum_{c}^{\infty} X_{c} \left[j \left(\frac{\omega-2\pi i}{MT} - \frac{2\pi k}{T} \right) \right]$$

• We have $X_d(e^{j\omega})=\frac{1}{M}\sum_{i=0}^{M-1}X(e^{j(\omega-2\pi i)/M})$ Scaled-copies of $X(e^{j\omega})$

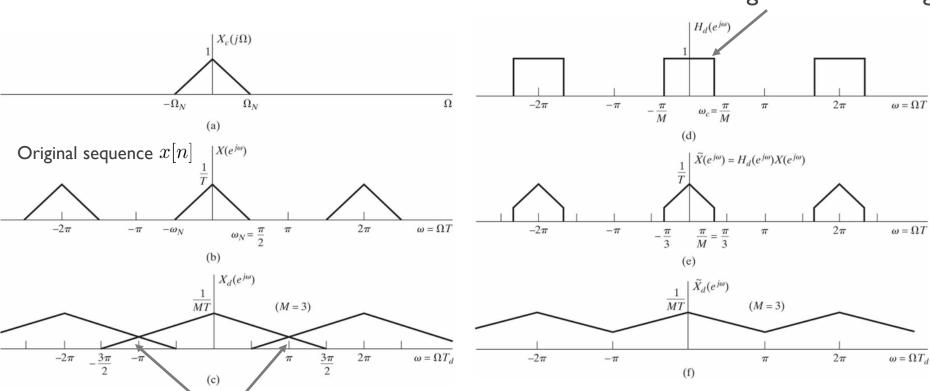
Example - no aliasing





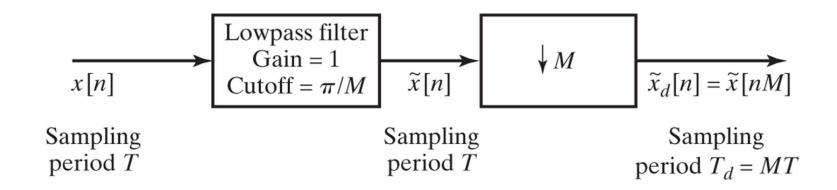
Example - with aliasing

Prefiltering to avoid aliasing



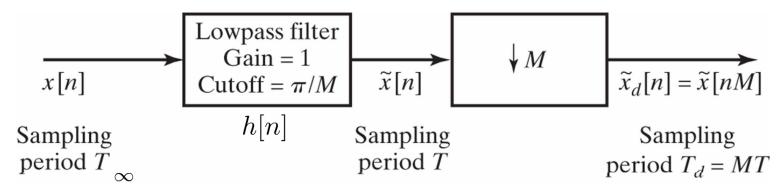
Aliasing occurs! To avoid aliasing, $\omega_N M \leq \pi$

A general downsampling system



- Lowpass filter to avoid aliasing
- The system also called "decimator" (in general, "downsampling")

Efficient implementation of downsampling



$$\tilde{x}[n] = \sum_{k = -\infty} h[k]x[n - k]$$

$$\tilde{x}_{d}[n] = \sum_{k=-\infty}^{\infty} h[k]x[Mn-k] = \sum_{\ell=0}^{M-1} \sum_{k'=-\infty}^{\infty} h[k'M+\ell]x[Mn-(k'M+\ell)]$$

$$= \sum_{\ell=0}^{M-1} \sum_{k=-\infty}^{\infty} h[kM+\ell]x[M(n-k)-\ell] = \sum_{\ell=0}^{M-1} h[Mn+\ell] * x[Mn-\ell]$$

Block diagram representation

