

Digital Signal Processing

POSTECH

Department of Electrical Engineering Junil Choi

Course at glance

Discrete Fourier Transform (DFT)

DFT vs. **DFS** pairs

Analysis equations

$$X[k] = \sum_{n=0}^{N-1} x[n]W_N^{kn}, \quad 0 \le k \le N-1$$

Synthesis equations

$$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] W_N^{-kn}, \quad 0 \le n \le N-1$$

Zeros outside the range of [0,N]

$$\tilde{X}[k] = \sum_{n=0}^{N-1} \tilde{x}[n] W_N^{kn}$$

$$\tilde{x}[n] = \frac{1}{N} \sum_{k=0}^{N-1} \tilde{X}[k] W_N^{-kn}$$
 Periodic with period N

• If we evaluate the values of DFT pairs outside of [0,N], they are not zeros, but a rather a periodic extension of x[n] and X[k]

→ Assume they are zeros because...

Properties of the DFT

Difference of DFT properties

- ◆ Many properties similar to the properties of DTFT and z-transform
- Need careful derivations
 - → Due to the finite-length assumption and implicit periodicity

Linearity

lacktriangle With two finite-length sequences $x_1[n]$ and $x_2[n]$, if

$$x_3[n] = ax_1[n] + bx_2[n]$$

then
$$X_3[k] = aX_1[k] + bX_2[k]$$

• The lengths of $x_1[n]$ and $x_2[n]$ may be different!

Length N_1 Length N_2

- The length of $x_3[n]$ should be $N_3 = \max(N_1, N_2)$
- lacktriangle DFTs $X_1[k]$ and $X_2[k]$ should be computed with the same length $N \geq N_3$
 - → Zero-padding for shorter sequence to have length N sequence

Circular shift

- For DTFT, if $x[n] \overset{\mathcal{DTFT}}{\longleftrightarrow} X(e^{j\omega})$, then $x[n-m] \overset{\mathcal{DTFT}}{\longleftrightarrow} e^{-j\omega m} X(e^{j\omega})$
 - → Delay in time corresponds to change in phase
- For DFT with finite-length sequence, if $x[n] \overset{\mathcal{DFT}}{\longleftrightarrow} X[k]$, then

$$X_1[k] = e^{-j(2\pi k/N)m} X[k] = W_N^{km} X[k] \stackrel{\mathcal{DFT}}{\longleftrightarrow} x_1[n] ???$$

- $x_1[n]$ should be the length N sequence \rightarrow must be zero outside $0 \le n \le N-1$
 - \rightarrow Cannot be a simple time shift of x[n]
- Correct result $x_1[n] = x[((n-m))_N], \quad 0 \le n \le N-1$

Circular shift example

DFS results in Section 8.2

Circular convolution

• If $x_1[n] \stackrel{\mathcal{DFT}}{\longleftrightarrow} X_1[k]$ and $x_2[n] \stackrel{\mathcal{DFT}}{\longleftrightarrow} X_2[k]$ both with length N

$$X_3[k] = X_1[k]X_2[k] \stackrel{\mathcal{DFT}}{\longleftrightarrow} x_3[n] = \sum_{m=0}^{N-1} x_1[((m))_N]x_2[((n-m))_N], \ 0 \le n \le N-1$$

$$= \sum_{m=0}^{N-1} x_1[m]x_2[((n-m))_N], \ 0 \le n \le N-1$$

Circularly time reversed and shifted

- → N-point circular convolution
- lacktriangle Define $x_3[n] = x_1[n] \widehat{\mathbb{Q}} x_2[n]$
- Circular convolution is commutative as linear convolution
- $\bullet \ \ \text{Using duality: } x_1[n]x_2[n] \stackrel{\mathcal{DFT}}{\longleftrightarrow} \frac{1}{N} X_1[k] \circledS X_2[k]$

Circular convolution of two rectangular pulses

◆ *N*-point circular convolution of length *N* sequences

Circular shift same as original sequence

Circular convolution of two rectangular pulses

 \bullet *N*=2*L*-point circular convolution of length *L* sequences

Circular convolution of two rectangular pulses

 \bullet *N*=2*L*-point circular convolution of length *L* sequences

→ Same as linear convolution!

Computing Linear Convolution Using the DFT

Importance of linear convolution

- ♦ In many DSP applications, we want linear convolution
 - → LTI systems represented with linear convolution
 - → Filtering
 - ★ Auto/cross-correlations
- DFT can be efficiently computed using Fast Fourier Transform (FFT)
 - → Results in circular convolution, not linear convolution
 - → Can we use DFT operations to get linear convolution?
 - → Yes!

From DTFT to DFT

- Let $x_3[n] = x_1[n] * x_2[n]$ and $X_3(e^{j\omega}) = X_1(e^{j\omega})X_2(e^{j\omega})$ Linear convolution
- ♦ If we define DFT $X_3[k] = X_3(e^{j(2\pi k/N)})$ = $X_1(e^{j(2\pi k/N)})X_2(e^{j(2\pi k/N)})$ = $X_1[k]X_2[k], 0 \le k \le N-1$
- Inverse DFT of

$$X_3[k] \stackrel{\mathcal{DFT}}{\longleftrightarrow} x_1[n] \mathfrak{D} x_2[n] = \begin{cases} \sum_{r=-\infty}^{\infty} x_3[n-rN], & 0 \le n \le N-1 \\ 0, & \text{otherwise} \end{cases}$$

→ Circular convolution = linear convolution followed by time aliasing!!!

When circular convolution = linear convolution?

- lacktriangle Consider length L sequence $x_1[n]$ and length P sequence $x_2[n]$
- Linear convolution of the two sequences

$$x_3[n] = \sum_{m=-\infty}^{\infty} x_1[m]x_2[n-m]$$

is length L+P-1 sequence

- lacktriangle With N-point DFT where $N \geq L + P 1$
 - → Circular convolution = linear convolution

Previous examples

Consider two sequences

Previous examples

Partial time domain aliasing

◆ With *L*-point DFT (instead of *N*)

$$x_{3p}[n] = \begin{cases} x_1[n] \mathbb{O} x_2[n] = \sum_{r=-\infty}^{\infty} x_3[n-rL], & 0 \le n \le L-1 \\ 0, & \text{otherwise} \end{cases}$$

How does it look like?

Partial time domain aliasing

Partial time domain aliasing

Partial time domain aliasing - systematic approach

Efficient way to calculate circular convolution

- Consider the two sequences
- ◆ Want to have *L*-point circular convolution
- ◆ Possible to use circulant matrix

$$x_1[n] = \{1, 1, 1, 1, 1, 2, 2, 2\}$$

 $x_2[n] = \{1, 1, 1, 1, 0, 0, 0, 0\}$

 $H_N[k_0] = H(e^{j\omega}) \mid_{\omega=2\pi \frac{k_0}{N}}$

Interesting feature of DFT

• Consider
$$x[n] = e^{j2\pi \frac{k_0}{N}n} \left\{ u[n] - u[n-N] \right\}$$

$$\bullet \text{ N-point DFT gives } x[n] \overset{\mathcal{DFT}}{\longleftrightarrow} X_N[k] = N\delta[k-k_0]$$

- lacktriangle Consider h[n] of length $M \leq N$ and its N-point DFT $H_N[k]$
- $\bullet \ \ \mathsf{Note} \ \ Y_N[k] = X_N[k]H_N[k] = NH_N[k_0]\delta[k-k_0] \overset{\mathcal{DFT}}{\longleftrightarrow} y_p[n] = H_N[k_0]x[n]$

which mimics $y[n] = e^{j\omega_0 n} *h[n] = H(e^{j\omega_0})e^{j\omega_0 n}$

→ In other words

 $y_p[n] = \left(e^{j2\pi \frac{k_0}{N}n} \left\{ u[n] - u[n-N] \right\} \right) \otimes h[n] = H_N[k_0] \left(e^{j2\pi \frac{k_0}{N}n} \left\{ u[n] - u[n-N] \right\} \right)$

POSTECH

convolution

Example (8.7 in the textbook)

Interesting feature of DFT

lacktriangle Because x[n] is length N and h[n] is length M < N, the linear convolution

$$y[n] = h[n] * x[n]$$

is length N+M-1 sequence

- ightharpoonup Time-domain aliasing occurs in $y_p[n] = h[n] \mathfrak{N} x[n]$
- But these aliased M-I points amazingly yield "good" points to have

$$y_p[n] = \left(e^{j2\pi \frac{k_0}{N}n} \left\{ u[n] - u[n-N] \right\} \right) \otimes h[n] = H_N[k_0] \left(e^{j2\pi \frac{k_0}{N}n} \left\{ u[n] - u[n-N] \right\} \right)$$

Interesting feature of DFT

◆ Because DFT operation is linear (all DFT operations below are N-point DFT)

$$x[n] = \sum_{\ell=0}^{N-1} \alpha_{\ell} e^{j2\pi \frac{\ell}{N}n} \left\{ u[n] - u[n-N] \right\} \stackrel{\mathcal{DFT}}{\longleftrightarrow} X_N[k]$$

$$h[n] \overset{\mathcal{DFT}}{\longleftrightarrow} H_N[k]$$
 Length $M \leq N$

$$Y_N[k] = H_N[k]X_N[k] \stackrel{\mathcal{DFT}}{\longleftrightarrow} y_N[n] = \sum_{\ell=0}^{N-1} \alpha_\ell H_N[\ell] e^{j2\pi \frac{\ell}{N}n} \left\{ u[n] - u[n-N] \right\}$$

Implementing LTI Systems Using the DFT

LTI systems and DFT

- ◆ LTI systems characterized by impulse response and linear convolution
- ◆ DFT can be
 - efficiently implemented using FFT
 - lacktriangle used to implement linear convolution with N-point DFT with $N \geq L + P 1$
 - \rightarrow Both x[n] and h[n] must be zero-padded to become length N sequences
- Input sequence x[n] can have very large number of samples
 - → Impractical to compute DFT when N too large or
 - → All the samples should be collected to computed N-point DFT
 - → Cause large delay

Block convolution

- Solution for both problems
- lacktriangle The sequence x[n] to be filtered is segmented into sections of length L
- ◆ Each section can be convolved with finite-length impulse response
- Filtered section then can be combined in a proper way
- ◆ Linear filtering of each block implemented using DFT
- Overlap-add method vs. overlap-save method

Consider two sequences

 Represent x[n] as a sum of shifted nonoverlapping finite-length segments of length L

$$x[n] = \sum_{r=0}^{\infty} x_r[n-rL] \text{ where } x_r[n] = \begin{cases} x[n+rL], & 0 \le n \le L-1 \\ 0 & \text{otherwise} \end{cases}$$
 Redefining time origin

(a)

After filtering

$$y[n] = x[n] * h[n] = \sum_{r=0}^{\infty} y_r[n-rL]$$
 where $y_r[n] = x_r[n] * h[n]$ Length L+P-I

- lacktriangle Each filtered segment obtained with $N \geq L + P 1$ -point DFT
- lacktriangle Each filtered segment then time-shifted and added to obtain y[n]

Matlab Programming

Circular time-shifting property of DFT

% Circular time-shifting property of DFT clc;clf; x=0:2:16;N=length(x);n=0:N-1;y=circshift(x,5,2);Χ У XF=fft(x);YF=fft(y);subplot(2,2,1);stem(n,abs(XF));grid; title('Magnitude of DFT of original sequence'); subplot(2,2,2);stem(n,abs(YF));grid; title('Magnitude of DFT of circularly shifted sequence'); subplot(2,2,3);stem(n,angle(XF));grid; title('Phase of DFT of original sequence'); subplot(2,2,4);stem(n,angle(YF));grid;

title('Phase of DFT of circularly shifted sequence');

Circular convolution property of DFT

```
%Circular convoultion property of DFT clc;

g1=1:6;
g2=[1 -2 3 3 -2 1];
ylin=conv(g1,g2)
ycir=cconv(g1,g2)

G1=fft(g1);
G2=fft(g2);
yc=ifft(G1.*G2)
```


Textbook homework

Problems in textbook: 8.29 (typo in (b): seven-point DFT => five-point DFT),
 8.30, 8.34, 8.44 (total 4 problems)

MATLAB homework I

- Due 12/04 (Tuesday) by 1:50pm
- Implement circular convolution
 - → Implement a function with 3 inputs (have proper annotations!!!)

function y=circonv(x1,x2,N) \rightarrow Use the name "circonv" !!! (unless 50% loss)

- x1,x2: arbitrary length real sequences
- N: length of output y
- → Implement circular convolution WITHOUT using fft, ifft, conv. (no point with these)
 - You many use circshift if needed
- \rightarrow The output y should be the same with the result from cconv(x1,x2,N)
 - Should work for all lengths of x1 and x2 and arbitrary N!!!
- → Use main.m file in the next slide for evaluation

MATLAB homework I

◆ Have main.m file as follows.We will change N value randomly

```
clear all
N = 300;
x1=randn(1,58); x2=randn(1,198);
y_circonv=circonv(x1,x2,N);
y_cconv=cconv(x1,x2,N);
figure(1)
plot(1:N,y_circonv,'b-o')
hold on
plot(1:N.v cconv.'r-x')
%=============
x1=randn(1,117); x2=randn(1,33);
y_circonv=circonv(x1,x2,N);
y_cconv=cconv(x1,x2,N);
figure(2)
plot(1:N,y_circonv,'b-o')
hold on
plot(1:N,y cconv,'r-x')
%=============
x1=randn(1,11); x2=randn(1,237);
y_circonv=circonv(x1,x2,N);
y_cconv=cconv(x1,x2,N);
figure(3)
plot(1:N,y_circonv,'b-o')
hold on
plot(1:N,y cconv,'r-x')
```


MATLAB homework 2

- Implement overlap-add method
- Generate two sequences x=randn(1,10), y=randn(1,10000)
- Compare
 - → Linear convolution
 - → Use (10+10000-1)-point DFT/IDFT to obtain linear convolution
 - → Use I024-point DFT/IDFT with overlap-add method using proper segment length to obtain linear convolution
- Compare plots of three results
- All results must be the same

DFT (FFT) Applications

DFT applications

- Short list from Wikipedia
 - → Spectral analysis
 - + Filter bank
 - → Data compression
 - → Partial differential equations
 - → Multiplication of large integers
 - → Convolution
 - **+** ...
- We will briefly discuss 'spectral analysis' and 'digital subbanding'

Notch filters (bandstop filter with narrow stopband)

- lacktriangle Want to get rid of frequency component at ω_0
- z-transform representation of general notch filters

$$H_{\text{notch}}(z) = \frac{G(z - e^{j\omega_0})(z - e^{-j\omega_0})}{(z - re^{j\omega_0})(z - re^{-j\omega_0})}$$

- Clearly, $H_{\text{notch}}(e^{j\omega_0}) = H_{\text{notch}}(e^{-j\omega_0}) = 0$
- The difference equation for notch filter

$$y[n] = 2r\cos(\omega_0)y[n-1] - r^2y[n-2] + Gx[n] - G2\cos(\omega_0)x[n-1] + Gx[n-2]$$

Matlab example of notch filter

```
%Shows how simple difference equation can remove a tone
%that's corrupting a speech utterance.
clf
clear all
%these commands read in the speech file: need getspeech.m
datar=getspeech('woman voice.wav');
Fs=12500;
%plot data to cut off silence
plot(datar)
[d, dsize] = size (datar);
input('play back utterance at 12.5 KHz sampling rate');
soundsc(datar,Fs)
input ('add tone at 3.125 KHz to utterance and play back');
omega noise=pi/2;
nc=1:dsize;
x=datar+500*cos(omega noise*nc);
Figure (2)
plot(x)
soundsc(x, Fs)
%define coefficients for second-order notch filter
r=0.95;
omega0=pi/2;
input ('run tone corrupted speech through simple second order difference equation');
y(1) = 0; y(2) = 0;
for n=3:dsize
y(n) = 2*r*cos(omega0)*y(n-1)-r^2*y(n-2)+x(n)-2*cos(omega0)*x(n-1)+x(n-2);
end
input ('play back output of difference eqn.');
soundsc(y,Fs)
```


Spectral analysis

- Check out notcheg_r2.m file
- Questions
 - → What is the difference between the DFT plots?
 - → What is the right value for the DFT size N?
 - Notch filter is IIR! Cannot use N>L+P-I argument.
- https://stackoverflow.com/questions/20108462/matlab-filter-in-the-frequency-domain-using-fft-ifft-with-an-iir-filter/40833174#40833174

