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Course at glance
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Discrete-time signals

Fourier-domain 
representation

Sampling and 
reconstruction

z-transform DFT/FFT

Discrete-time systems

Discrete-time 
signals and systems

Structure

Analysis

Filter design



Discrete Fourier Transform (DFT)
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DFT vs. DFS pairs

 Analysis equations

 Synthesis equations

 If we evaluate the values of DFT pairs outside of [0,N], they are not zeros, 
but a rather a periodic extension of x[n] and X[k]
Assume they are zeros because…
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Periodic with period NZeros outside the range of [0,N]



Properties of the DFT
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Difference of DFT properties

 Many properties similar to the properties of DTFT and z-transform

 Need careful derivations
 Due to the finite-length assumption and implicit periodicity
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Linearity

 With two finite-length sequences                         , if

then
 The lengths of                           may be different!

 The length of          should be 
 DFTs                            should be computed with the same length
 Zero-padding for shorter sequence to have length N sequence
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Circular shift

 For DTFT, if                               , then
 Delay in time corresponds to change in phase

 For DFT with finite-length sequence, if                        , then

 should be the length N sequence  must be zero outside
 Cannot be a simple time shift of x[n] 

 Correct result
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Circular shift example
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DFS results in 
Section 8.2



Circular convolution

 If                                                               both with length N

 N-point circular convolution
 Define
 Circular convolution is commutative as linear convolution
 Using duality: 
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Circularly time reversed and shifted



Circular convolution of two rectangular pulses

 N-point circular convolution of length N sequences
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Circular shift same as 
original sequence



Circular convolution of two rectangular pulses

 N=2L-point circular convolution of length L sequences
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Circular convolution of two rectangular pulses

 N=2L-point circular convolution of length L sequences

 Same as linear convolution! 

13



Computing Linear Convolution 
Using the DFT
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Importance of linear convolution

 In many DSP applications, we want linear convolution
 LTI systems represented with linear convolution
 Filtering
 Auto/cross-correlations

 DFT can be efficiently computed using Fast Fourier Transform (FFT)
 Results in circular convolution, not linear convolution
 Can we use DFT operations to get linear convolution? 
Yes!
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From DTFT to DFT

 Let

 If we define DFT

 Inverse DFT of

 Circular convolution = linear convolution followed by time aliasing!!!
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Linear convolution



When circular convolution = linear convolution?

 Consider length L sequence           and length P sequence

 Linear convolution of the two sequences

is length L+P-1 sequence

 With N-point DFT where 
 Circular convolution = linear convolution
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Previous examples

 Consider two sequences
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Previous examples
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Correct 0



Partial time domain aliasing

 With L-point DFT (instead of N)

 How does it look like?
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Partial time domain aliasing
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Partial time domain aliasing
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Length L sequence



Partial time domain aliasing – systematic approach
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Efficient way to calculate circular convolution

 Consider the two sequences
 Want to have L-point circular convolution
 Possible to use circulant matrix
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Interesting feature of DFT

 Consider

 N-point DFT gives

 Consider h[n] of length              and its N-point DFT

 Note
 In other words

which mimics

25Linear convolution



Example (8.7 in the textbook)
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Interesting feature of DFT

 Because x[n] is length N and h[n] is length M<N, the linear convolution

is length N+M-1 sequence
Time-domain aliasing occurs in

 But these aliased M-1 points amazingly yield “good” points to have
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Interesting feature of DFT

 Because DFT operation is linear (all DFT operations below are N-point DFT)
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Implementing LTI Systems Using 
the DFT
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LTI systems and DFT

 LTI systems characterized by impulse response and linear convolution

 DFT can be 
 efficiently implemented using FFT
 used to implement linear convolution with N-point DFT with
 Both x[n] and h[n] must be zero-padded to become length N sequences

 Input sequence x[n] can have very large number of samples
 Impractical to compute DFT when N too large or
 All the samples should be collected to computed N-point DFT
 Cause large delay
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Block convolution

 Solution for both problems

 The sequence x[n] to be filtered is segmented into sections of length L

 Each section can be convolved with finite-length impulse response

 Filtered section then can be combined in a proper way

 Linear filtering of each block implemented using DFT

 Overlap-add method vs. overlap-save method
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Overlap-add method

 Consider two sequences
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Overlap-add method

 Represent x[n] as a sum of shifted nonoverlapping finite-length segments 
of length L
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Redefining time origin



Overlap-add method

 After filtering

 Each filtered segment obtained with                         -point DFT

 Each filtered segment then time-shifted and added to obtain y[n] 
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Length L+P-1



Overlap-add method
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Matlab Programming
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Circular time-shifting property of DFT
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% Circular time-shifting property of DFT
clc;clf;

x=0:2:16;
N=length(x);
n=0:N-1;

y=circshift(x,5,2);
x
y
XF=fft(x);
YF=fft(y);

subplot(2,2,1);stem(n,abs(XF));grid;
title('Magnitude of DFT of original sequence');
subplot(2,2,2);stem(n,abs(YF));grid;
title('Magnitude of DFT of circularly shifted sequence');
subplot(2,2,3);stem(n,angle(XF));grid;
title('Phase of DFT of original sequence');
subplot(2,2,4);stem(n,angle(YF));grid;
title('Phase of DFT of circularly shifted sequence');



Circular convolution property of DFT

38

%Circular convoultion property of DFT
clc;

g1=1:6;
g2=[1 -2 3 3 -2 1];
ylin=conv(g1,g2)
ycir=cconv(g1,g2)

G1=fft(g1);
G2=fft(g2);
yc=ifft(G1.*G2)



Textbook homework

 Problems in textbook: 8.29 (typo in (b): seven-point DFT => five-point DFT), 
8.30, 8.34, 8.44 (total 4 problems)
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MATLAB homework 1

 Due 12/04 (Tuesday) by 1:50pm
 Implement circular convolution

 Implement a function with 3 inputs (have proper annotations!!!)

function y=circonv(x1,x2,N)  Use the name “circonv” !!! (unless 50% loss)
• x1, x2: arbitrary length real sequences
• N: length of output y

 Implement circular convolution WITHOUT using fft, ifft, conv. (no point with these)
• You many use circshift if needed

 The output y should be the same with the result from cconv(x1,x2,N)
• Should work for all lengths of x1 and x2 and arbitrary N!!!

 Use main.m file in the next slide for evaluation
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MATLAB homework 1

 Have main.m file as follows. We will change N value randomly 
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clear all

N = 300; 

x1=randn(1,58); x2=randn(1,198);

y_circonv=circonv(x1,x2,N);
y_cconv=cconv(x1,x2,N);

figure(1)
plot(1:N,y_circonv,'b-o')
hold on
plot(1:N,y_cconv,'r-x')
%===========================
x1=randn(1,117); x2=randn(1,33);

y_circonv=circonv(x1,x2,N);
y_cconv=cconv(x1,x2,N);

figure(2)
plot(1:N,y_circonv,'b-o')
hold on
plot(1:N,y_cconv,'r-x')
%===========================
x1=randn(1,11); x2=randn(1,237);

y_circonv=circonv(x1,x2,N);
y_cconv=cconv(x1,x2,N);

figure(3)
plot(1:N,y_circonv,'b-o')
hold on
plot(1:N,y_cconv,'r-x')



MATLAB homework 2 

 Implement overlap-add method
 Generate two sequences x=randn(1,10), y=randn(1,10000)
 Compare 

 Linear convolution
 Use (10+10000-1)-point DFT/IDFT to obtain linear convolution
 Use 1024-point DFT/IDFT with overlap-add method using proper segment 

length to obtain linear convolution

 Compare plots of three results
 All results must be the same
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DFT (FFT) Applications
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DFT applications

 Short list from Wikipedia
 Spectral analysis
 Filter bank
 Data compression
 Partial differential equations
 Multiplication of large integers
 Convolution
 ...

 We will briefly discuss ‘spectral analysis’ and ‘digital subbanding’
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Notch filters (bandstop filter with narrow stopband)

 Want to get rid of frequency component at

 z-transform representation of general notch filters

 Clearly, 

 The difference equation for notch filter 
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Matlab example of notch filter
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%Shows how simple difference equation can remove a tone
%that's corrupting a speech utterance.
clf
clear all
%these commands read in the speech file: need getspeech.m
datar=getspeech('woman_voice.wav');
Fs=12500;
%plot data to cut off silence
plot(datar)
[d,dsize]=size(datar);
input('play back utterance at 12.5 KHz sampling rate');
soundsc(datar,Fs)
input('add tone at 3.125 KHz to utterance and play back');
omega_noise=pi/2;
nc=1:dsize;
x=datar+500*cos(omega_noise*nc);
Figure(2)
plot(x)
soundsc(x,Fs)
%define coefficients for second-order notch filter
r=0.95; 
omega0=pi/2;
input('run tone corrupted speech through simple second order difference equation');
y(1)=0; y(2)=0;
for n=3:dsize
y(n)=2*r*cos(omega0)*y(n-1)-r^2*y(n-2)+x(n)-2*cos(omega0)*x(n-1)+x(n-2);
end
input('play back output of difference eqn.');
soundsc(y,Fs)



Spectral analysis

 Check out notcheg_r2.m file

 Questions
 What is the difference between the DFT plots?
 What is the right value for the DFT size N?

• Notch filter is IIR! Cannot use N>L+P-1 argument.

 https://stackoverflow.com/questions/20108462/matlab-filter-in-the-
frequency-domain-using-fft-ifft-with-an-iir-filter/40833174#40833174
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