

Digital Signal Processing

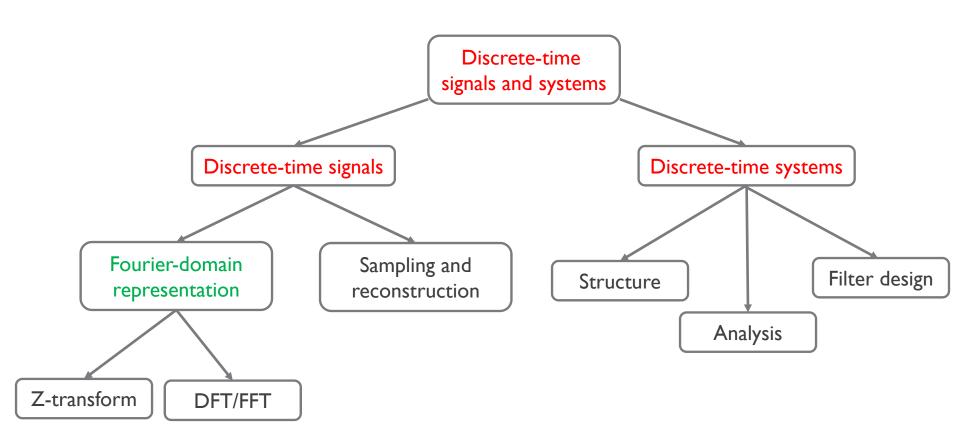
POSTECH

Department of Electrical Engineering Junil Choi

Textbook HW password

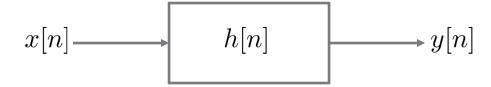
????

Course at glance



Frequency-domain description

Consider LTI systems



- If x[n] is a complex exponential (or sinusoid)
 - Then y[n] is also a complex exponential (or sinusoid) with
 - 1) Same frequency as x[n]
 - 2) Amplitude and phase determined by the system h[n]
- In other words, complex exponential and sinusoid are eigenfunctions of LTI systems

Eigenfunctions

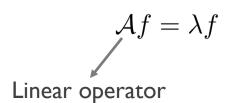
• Consider complex exponential input $x[n] = e^{j\omega n}, -\infty < n < \infty$

$$y[n] = T\{x[n]\} = \sum_{k=-\infty}^{\infty} h[k]e^{j\omega(n-k)} = \sum_{k=-\infty}^{\infty} h[k]e^{-j\omega k}e^{j\omega n} = H(e^{j\omega})x[n]$$

where
$$H(e^{j\omega}) = \sum_{k=-\infty}^{\infty} h[k]e^{-j\omega k}$$

• In other words, for LTI systems, if $x[n] = e^{j\omega n}, -\infty < n < \infty$

$$y[n] = H(e^{j\omega})e^{j\omega n}$$
 Eigenfunction



Frequency response

- lacktriangle Eigenvalue $H(e^{j\omega})$ is called as frequency response of LTI system
- Mathematical definition

$$H(e^{j\omega}) = \sum_{k=-\infty}^{\infty} h[k]e^{-j\omega k}$$

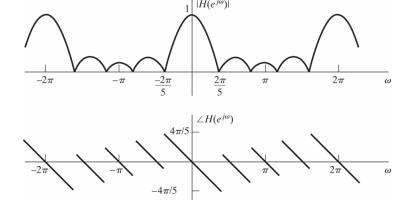
Frequency response of moving average system

- Example 2.16 in the textbook $h[n] = \frac{1}{M_1 + M_2 + 1} \sum_{k=-M_2}^{\infty} \delta[n-k]$
- ◆ General frequency response

$$H(e^{j\omega}) = \frac{1}{M_1 + M_2 + 1} \sum_{n=-M_1}^{M_2} e^{-j\omega n}$$

• If $M_1 = 0$,

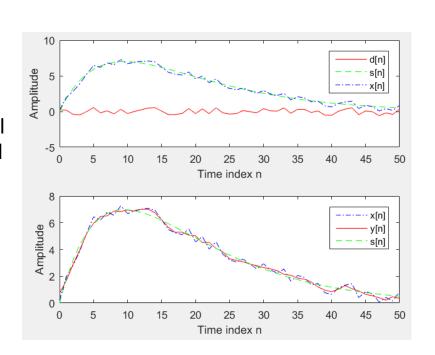
$$H(e^{j\omega}) = \frac{1}{M_2 + 1} \sum_{m=0}^{M_2} e^{-j\omega n} = \frac{1}{M_2 + 1} \frac{\sin[\omega(M_2 + 1)/2]}{\sin \omega/2} e^{-j\omega M_2/2}$$



Moving average

% Signal smoothing (moving average)

```
R=51;
d=1.2*(rand(1,R)-0.5); % Generate random noise
m=0:R-1;
s=2*m.*(0.9.^m);
                    % Generate uncorrupted signal
x=s+d;
                   % Generate noise corrupted signal
subplot(2,1,1);plot(m,d,'r-',m,s,'g--',m,x,'b-.');
xlabel('Time index n');ylabel('Amplitude');
legend('d[n]','s[n]','x[n]');
x1=[0\ 0\ x];x2=[0\ x\ 0];x3=[x\ 0\ 0];
y=(x1+x2+x3)/3;
subplot(2,1,2);plot(m,y(2:R+1),'r-',m,s,'g--');
legend('y[n]','s[n]');xlabel('Time index n');ylabel('Amplitude');
```



Issues regarding practical signal

- In theory, we assume x[n] exists for $-\infty < n < \infty$
- This is rarely the case in real signals
 - \star Example: $x[n] = e^{j\omega n}u[n]$
- For causal LTI system

causal LTI system
$$y[n] = \begin{cases} 0, & n < 0 \\ \left(\sum_{k=0}^{n} h[k]e^{-j\omega k}\right) e^{j\omega n} & n \geq 0 \end{cases}$$
 Is this obvious?
$$= \left(\sum_{k=0}^{\infty} h[k]e^{-j\omega k}\right) e^{j\omega n} - \left(\sum_{k=n+1}^{\infty} h[k]e^{-j\omega k}\right) e^{j\omega n}$$

$$= H(e^{j\omega})e^{j\omega n} - \left(\sum_{k=n+1}^{\infty} h[k]e^{-j\omega k}\right) e^{j\omega n}$$

Steady-state response $y_{ss}[n]$ Transient response $y_t[n]$

Steady-state / transient responses

• For FIR system with h[n] = 0 except $0 \le n \le M$

$$y_t[n] = 0 \text{ for } n > M - 1$$

 $y[n] = y_{ss}[n] = H(e^{j\omega})e^{j\omega n} \text{ for } n > M - 1$

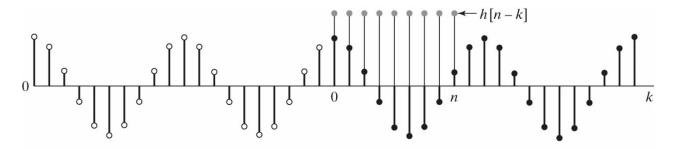
For IIR system, transient period never ends, but...

$$|y_t[n]| = \left| \left(\sum_{k=n+1}^{\infty} h[k] e^{-j\omega k} \right) e^{j\omega n} \right| \le \sum_{k=n+1}^{\infty} |h[k]| \le \sum_{k=0}^{\infty} |h[k]|$$

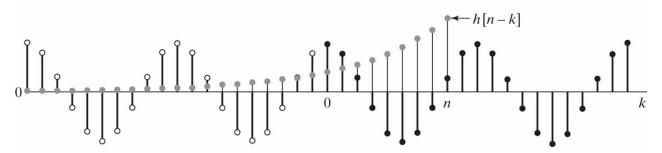
If the system is stable, i.e., $\sum_{k=0}|h[k]|<\infty$, $|y_t[n]|$ becomes increasingly smaller as $n\to\infty$

Can rely on theoretical analysis assuming x[n] exists for $-\infty < n < \infty$

Steady-state / transient responses



FIR case
Only steady-state response remains after n



Stable IIR case → Transient response becomes negligible as n increases

Fourier Transform Representations

Why frequency response important?

lacktriangle A broad class of signals can be represented as $x[n] = \sum_k \alpha_k e^{j\omega_k n}$

$$ightharpoonup$$
 Example: $A\cos(\omega_0 n + \phi) = \frac{A}{2}e^{j\phi}e^{j\omega_0 n} + \frac{A}{2}e^{-j\phi}e^{-j\omega_0 n}$

◆ The output of LTI system is

$$y[n] = \sum_{k} \alpha_k H(e^{j\omega_k}) e^{j\omega_k n}$$

lacktriangle If we know $H(e^{j\omega_k})$ for all k, the output of the LTI system can be easily computed

Frequency-domain representation

- ◆ Fourier transform pair
 - → Many sequences can be represented as

$$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) e^{j\omega n} d\omega$$
 Inverse Fourier transform

where

$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$$
 (Discrete-time) Fourier transform

Note that x[n] is represented as a superposition of infinitesimally small complex sinusoids $\frac{1}{2\pi}X(e^{j\omega})e^{j\omega n}d\omega$

with ω ranging over an interval of length 2π

Meaning of Fourier transform

- Recall $X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$
- lacklash It computes how much of each frequency component $X(e^{j\omega})$ is required to represent

$$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) e^{j\omega n} d\omega$$

lacktriangle Generally, Fourier transform is complex-valued function of ω

$$X(e^{j\omega}) = X_R(e^{j\omega}) + jX_I(e^{j\omega})$$
$$= |X(e^{j\omega})|e^{j\angle X(e^{j\omega})}$$

Phase not uniquely specified

Frequency response of LTI system

Frequency response of LTI system

$$H(e^{j\omega}) = \sum_{k=-\infty}^{\infty} h[k]e^{-j\omega k}$$

is Fourier transform of impulse response h[n]

Inverse Fourier transform gives

$$h[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} H(e^{j\omega}) e^{j\omega n} d\omega$$

- Equivalence relation between the Fourier series representation of continuous-variable periodic functions and the Fourier transform representation of discrete-time signals
 - ✦ Read textbook 77p

Sufficient condition for Fourier transform

Fourier transform should be finite to exist

$$|X(e^{j\omega})| < \infty$$
 for all ω

Sufficient condition for the convergence of $X(e^{j\omega})$

Not necessary
$$|X(e^{j\omega})| = \left|\sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}\right|$$

$$\leq \sum_{n=0}^{\infty} |x[n]| |e^{-j\omega n}|$$

$$\leq \sum_{n=-\infty}^{\infty} |x[n]| < \infty$$

Not absolutely summable sequences

• Consider square summable $\sum_{n=-\infty}^{\infty} |x[n]|^2 < \infty$

For such sequences, mean-square convergence exists

$$\lim_{M \to \infty} \int_{-\pi}^{\pi} |X(e^{j\omega}) - X_M(e^{j\omega})|^2 d\omega = 0$$

where

$$X_M(e^{j\omega}) = \sum_{n=-M}^{M} x[n]e^{-j\omega n}$$

Ideal lowpass filter example

Frequency response of ideal lowpass filter

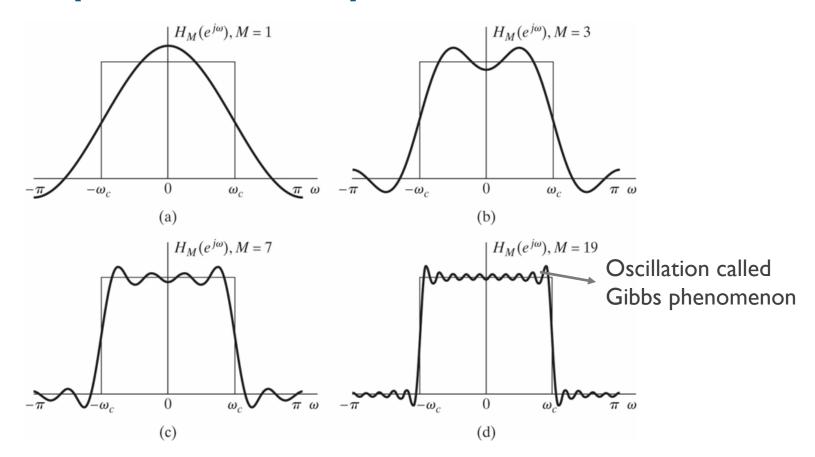
$$H_{\rm lp}(e^{j\omega}) = \begin{cases} 1, & |\omega| < \omega_c \\ 0, & \omega_c < |\omega| \le \pi \end{cases}$$

Impulse response of $H_{\rm lp}(e^{j\omega})$

$$h_{\rm lp}[n] = \frac{1}{2\pi} \int_{-\infty}^{\omega_c} e^{j\omega n} d\omega = \frac{\sin \omega_c n}{\pi n}, \quad -\infty < n < \infty$$

Noncausal, not absolutely summable

Ideal lowpass filter example



Sequences neither absolutely nor square summable

◆ Constant sequence: x[n]=I for all n

Impulse train with period
$$2\pi$$
 $X(e^{j\omega}) = \sum_{r=-\infty}^{\infty} 2\pi\delta(\omega+2\pi r)$

lacktriangle Complex exponential sequence: $x[n] = e^{j\omega_0 n}$ Shifted impulse train

$$X(e^{j\omega}) = \sum_{r=-\infty}^{\infty} 2\pi\delta(\omega - \omega_0 + 2\pi r)$$

• Generalization of exponential sequence $x[n] = \sum_k a_k e^{j\omega_k n}$ $X(e^{j\omega}) = \sum_k \sum 2\pi a_k \delta(\omega - \omega_k + 2\pi r)$

Symmetry properties of Fourier Transform

Symmetry properties of sequences

- Symmetry of complex sequence
 - ullet Conjugate-symmetric: $x_e[n] = x_e^*[-n]$
 - \bullet Conjugate-asymmetric: $x_o[n] = -x_o^*[-n]$
- lacktriangle Any complex signal can be represented as $x[n] = x_e[n] + x_o[n]$ where

$$x_e[n] = \frac{1}{2}(x[n] + x^*[-n]) = x_e^*[-n]$$

$$x_o[n] = \frac{1}{2}(x[n] - x^*[-n]) = -x_o^*[-n]$$

Symmetry properties of Fourier transform

Similar to complex sequence,

$$X(e^{j\omega}) = X_e(e^{j\omega}) + X_o(e^{j\omega})$$

where

$$X_{e}(e^{j\omega}) = \frac{1}{2} [X(e^{j\omega}) + X^{*}(e^{-j\omega})] = X_{e}^{*}(e^{-j\omega})$$
$$X_{o}(e^{j\omega}) = \frac{1}{2} [X(e^{j\omega}) - X^{*}(e^{-j\omega})] = -X_{o}^{*}(e^{-j\omega})$$

Symmetric properties can simplify solutions to problems

Symmetry properties of Fourier transform

Table 2.1	in book	Sequence $x[n]$	Fourier Transform $X(e^{j\omega})$
	1. x*[n]		$X^*(e^{-j\omega})$
	2. $x^*[-n]$		$X^*(e^{j\omega})$
	3. $\mathcal{R}e\{x[n]$]}	$X_e(e^{j\omega})$ (conjugate-symmetric part of $X(e^{j\omega})$)
	4. $j\mathcal{I}m\{x[x]\}$	n]}	$X_o(e^{j\omega})$ (conjugate-antisymmetric part of $X(e^{j\omega})$)
	5. $x_e[n]$	(conjugate-symmetric part of $x[n]$)	$X_R(e^{j\omega}) = \mathcal{R}e\{X(e^{j\omega})\}$
	6. $x_o[n]$	(conjugate-antisymmetric part of $x[n]$)	$jX_I(e^{j\omega}) = j\mathcal{I}m\{X(e^{j\omega})\}$
		The following p	roperties apply only when $x[n]$ is real:
	7. Any rea	al $x[n]$	$X(e^{j\omega}) = X^*(e^{-j\omega})$ (Fourier transform is conjugate symmetric)
	8. Any rea	al $x[n]$	$X_R(e^{j\omega}) = X_R(e^{-j\omega})$ (real part is even)
	9. Any rea	al $x[n]$	$X_I(e^{j\omega}) = -X_I(e^{-j\omega})$ (imaginary part is odd)
	10. Any real $x[n]$		$ X(e^{j\omega}) = X(e^{-j\omega}) $ (magnitude is even)
	11. Any real $x[n]$		$\angle X(e^{j\omega}) = -\angle X(e^{-j\omega})$ (phase is odd)
	12. $x_e[n]$	(even part of $x[n]$)	$X_R(e^{j\omega})$
	13. $x_o[n]$	(odd part of $x[n]$)	$jX_I(e^{j\omega})$

Simplify notations

Define some operations

$$X(e^{j\omega}) = \mathcal{F}\{x[n]\}$$

$$x[n] = \mathcal{F}^{-1}\{X(e^{j\omega})\}$$

$$x[n] \stackrel{\mathcal{F}}{\longleftrightarrow} \{X(e^{j\omega})\}$$

Fourier transform theorems

TABLE 2.2 FOURIER TRANSFORM THEOREMS

9. $\sum_{n=-\infty}^{\infty} x[n]y^*[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega})Y^*(e^{j\omega})d\omega$

Sequence	Fourier Transform
x[n]	$X(e^{j\omega})$
y[n]	$Y(e^{j\omega})$
$1. \ ax[n] + by[n]$	$aX(e^{j\omega}) + bY(e^{j\omega})$
2. $x[n-n_d]$ (n_d an integer)	$e^{-j\omega n_d} X (e^{j\omega})$
3. $e^{j\omega_0 n}x[n]$	$X(e^{j(\omega-\omega_0)})$
4. $x[-n]$	$X(e^{-j\omega})$ $X^*(e^{j\omega})$ if $x[n]$ real.
5. $nx[n]$	$j\frac{dX\left(e^{j\omega}\right)}{d\omega}$
6. x[n] * y[n]	$X(e^{j\omega})Y(e^{j\omega})$
7. $x[n]y[n]$	$\frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\theta}) Y(e^{j(\omega-\theta)}) d\theta$
Parseval's theorem:	
$8. \sum_{n=-\infty}^{\infty} x[n] ^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) ^2 d\omega$	Periodic convolution

Useful Fourier transform pairs

TABLE 2.3 FOURIER TRANSFORM PAIRS

Sequence	Fourier Transform
1. δ[n]	1
2. $\delta[n - n_0]$	$e^{-j\omega n_0}$
3. 1 $(-\infty < n < \infty)$	$\sum_{k=-\infty}^{\infty} 2\pi \delta(\omega + 2\pi k)$
4. $a^n u[n]$ (a < 1)	$\frac{1}{1 - ae^{-j\omega}}$
5. u[n]	$\frac{1}{1 - e^{-j\omega}} + \sum_{k = -\infty}^{\infty} \pi \delta(\omega + 2\pi k)$
6. $(n+1)a^nu[n]$ $(a < 1)$	$\frac{1}{(1-ae^{-j\omega})^2}$
7. $\frac{r^n \sin \omega_p(n+1)}{\sin \omega_p} u[n] (r < 1)$	$\frac{1}{1 - 2r\cos\omega_p e^{-j\omega} + r^2 e^{-j2\omega}}$
8. $\frac{\sin \omega_C n}{\pi n}$	$X(e^{j\omega}) = \begin{cases} 1, & \omega < \omega_{c}, \\ 0, & \omega_{c} < \omega \le \pi \end{cases}$
9. $x[n] = \begin{cases} 1, & 0 \le n \le M \\ 0, & \text{otherwise} \end{cases}$	$\frac{\sin[\omega(M+1)/2]}{\sin(\omega/2)}e^{-j\omega M/2}$
10. $e^{j\omega_0 n}$	$\sum_{k=-\infty}^{\infty} 2\pi \delta(\omega - \omega_0 + 2\pi k)$
11. $\cos(\omega_0 n + \phi)$	$\sum_{k=-\infty}^{\infty} \left[\pi e^{j\phi} \delta(\omega - \omega_0 + 2\pi k) + \pi e^{-j\phi} \delta(\omega + \omega_0 + 2\pi k) \right]$

Using Fourier transform theorems and pairs

- Using the tables, we can
 - → Compute Fourier transform of sequences without complex computations
 - → Compute inverse Fourier transform
 - + Example: $\mathcal{F}\{a^nu[n-5]\}=?$

$$x_1[n] = a^n u[n] \stackrel{\mathcal{F}}{\longleftrightarrow} X_1(e^{j\omega}) = \frac{1}{1 - ae^{-j\omega}}$$

$$x_2[n] = x_1[n - 5] \stackrel{\mathcal{F}}{\longleftrightarrow} X_2(e^{j\omega}) = e^{-j5\omega} X_1(e^{j\omega}) = \frac{e^{-j5\omega}}{1 - ae^{-j\omega}}$$

$$x[n] = a^5 x_2[n] \stackrel{\mathcal{F}}{\longleftrightarrow} X(e^{j\omega}) = \frac{a^5 e^{-j5\omega}}{1 - ae^{-j\omega}}$$

Another example

Consider the difference equation

$$y[n] - \frac{1}{2}y[n-1] = x[n] - \frac{1}{4}x[n-1]$$

• To get the impulse response, set $x[n] = \delta[n]$, which gives y[n] = h[n]

$$h[n] - \frac{1}{2}h[n-1] = \delta[n] - \frac{1}{4}\delta[n-1]$$

◆ Fourier transform gives

$$H(e^{j\omega}) - \frac{1}{2}e^{-j\omega}H(e^{j\omega}) = 1 - \frac{1}{4}e^{-j\omega}$$

$$H(e^{j\omega}) = \frac{1 - \frac{1}{4}e^{-j\omega}}{1 - \frac{1}{2}e^{-j\omega}}$$

Another example

• Decompose
$$H(e^{j\omega}) = \frac{1}{1 - \frac{1}{2}e^{-j\omega}} - \frac{\frac{1}{4}e^{-j\omega}}{1 - \frac{1}{2}e^{-j\omega}}$$

By using the table

$$\left(\frac{1}{2}\right)^n u[n] \stackrel{\mathcal{F}}{\longleftrightarrow} \frac{1}{1 - \frac{1}{2}e^{-j\omega}}, \quad -\left(\frac{1}{4}\right) \left(\frac{1}{2}\right)^{n-1} u[n-1] \stackrel{\mathcal{F}}{\longleftrightarrow} -\frac{\frac{1}{4}e^{-j\omega}}{1 - \frac{1}{2}e^{-j\omega}}$$

♦ h[n] becomes

$$h[n] = \left(\frac{1}{2}\right)^n u[n] - \left(\frac{1}{4}\right) \left(\frac{1}{2}\right)^{n-1} u[n-1]$$

◆ Read Examples 2.23-2.24 in the textbook

Auto/cross-correlations of Deterministic Signals

Definitions

lacktriangle Autocorrelation $c_{xx}[\ell] = \sum_{n=-\infty} x[n]x^*[n-\ell]$ Conjugate for complex sequences

• Cross-correlation
$$c_{xy}[\ell] = \sum_{n=-\infty}^{\infty} x[n]y^*[n-\ell]$$

Relation to convolution: missing initial fold step

$$c_{xy}[\ell] = x[\ell] * y^*[-\ell]$$
$$c_{xx}[\ell] = x[\ell] * x^*[-\ell]$$

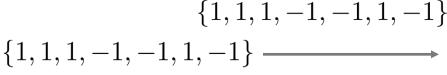
Pseudo-noise (PN) sequence

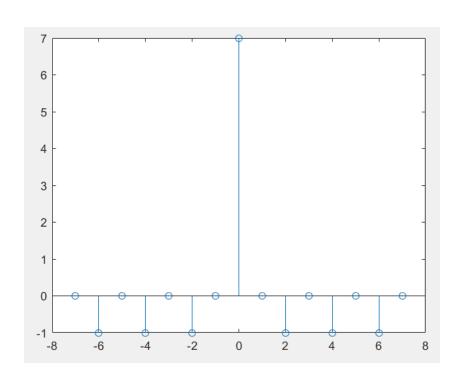
• Let
$$x[n] = \{1, 1, 1, -1, -1, 1, -1\}$$
 $\{1, 1, 1, -1, -1, 1, -1\}$ $n = 0$

Autocorrelation

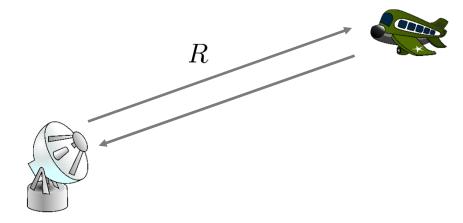
$$c_{xx}[\ell] = \sum_{n=-\infty}^{\infty} x[n]x^*[n-\ell]$$

- ◆ Example of Barker code
- Sharp peak at $\ell = 0$
- Time-delay estimation in radar

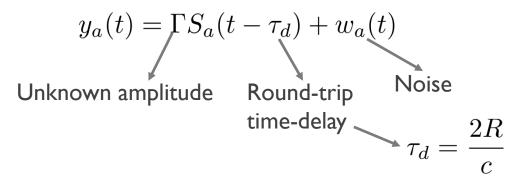




Radar example



- lacktriangle Transmit pulse $S_a(t)$
- Received "echo" after reflection off object



Radar example

- Sampled version $y[n] = \Gamma S_a(nT_s \tau_d) + w[n]$
- Assume sampling high enough: $\tau_d = DT_s$, where D is integer

$$S_a(nT_s - DT_s) = S_a((n-D)T_s) = s[n-D], \text{ where } s[n] = S_a(nT_s)$$

◆ Discrete-time (DT) model

$$y[n] = \Gamma s[n-D] + w[n] = s[n] * \Gamma \delta[n-D] + w[n]$$

→ Without noise, it can be modeled as an LTI system

$$x[n] \longrightarrow h[n] = \Gamma \delta[n-D] \longrightarrow y[n]$$

• Use cross-correlation to estimate D $\Rightarrow R = \frac{cDT_s}{2}$

Radar example

 $c_{ys}[\ell] = \sum_{n=0}^{\infty} y[n]s[n-\ell]$ Assume s[n] is a real signal, e.g., Barker code

$$= \sum_{n=-\infty} (\Gamma s[n-D] + w[n]) s[n-\ell]$$

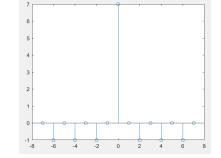
$$= \sum_{n=0}^{\infty} \Gamma s[n-D]s[n-\ell] + \sum_{n=0}^{\infty} w[n]s[n-\ell]$$

$$= \Gamma \sum s[n']s[n' - (\ell - D)] + c_{ws}[\ell]$$

$$= c_{ss}[\ell - D] + c_{ws}[\ell]$$

 $n=-\infty$

Peak at $\ell = D$



n' = n - D

Radar example: two-target case

Assume noiseless case

$$y[n] = \Gamma_1 s[n - D_1] + \Gamma_2 s[n - D_2]$$

= $s[n] * \{\Gamma_1 \delta[n - D_1] + \Gamma_2 \delta[n - D_2]\}$
= $s[n] * h[n]$

Cross-correlation between s[n] and y[n]

$$c_{ys}[\ell] = y[\ell] * s^*[-\ell] = c_{ss}[\ell] * h[\ell] = \Gamma_1 c_{ss}[\ell - D_1] + \Gamma_2 c_{ss}[\ell - D_2]$$

Radar example: two-target case

Desired autocorrelation sequence

$$c_{ys}[\ell] = \Gamma_1 c_{ss}[\ell - D_1] + \Gamma_2 c_{ss}[\ell - D_2]$$

Want to have an approximated Kronecker delta $\delta[n]$ to resolve closely-spaced targets

- Some undesired scenarios
 - → Two autocorrelations can overlap → yield only a single peak at some delay between D_1 and D_2
 - Weaker (smaller) target can be masked by the "sidelobes" of the stronger target

Properties of autocorrelation sequences

◆ Three main properties of autocorrelation sequence

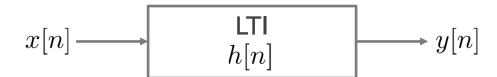
$$c_{xx}[\ell] = x[\ell] * x^*[-\ell]$$

$$c_{xx}[-\ell] = c_{xx}^*[\ell]$$

$$+ |c_{xx}[\ell]| \le c_{xx}[0] = \sum_{n=-\infty}^{\infty} x^2[n] = \text{energy}$$

$$+\sum_{\ell=-\infty}^{\infty} c_{xx}[\ell]e^{-j\omega\ell} \ge 0, \text{ for all } \omega$$

Input/output relationships for LTI system



$$c_{yx}[\ell] = c_{xx}[\ell] * h[\ell]$$

 $c_{yx}[\ell] = c_{xx}[\ell] * h[\ell]$ Try to prove these $c_{yy}[\ell] = c_{xx}[\ell] * c_{hh}[\ell]$

MATLAB Programming

DTFT computation - preliminary

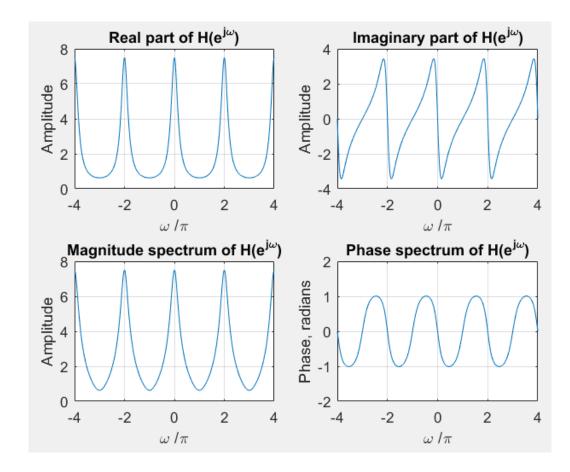
- Use 'freqz' function
- Only can evaluate DTFT that is expressed as

$$X(e^{j\omega}) = \frac{p_0 + p_1 e^{-j\omega} + \dots + p_M e^{-j\omega M}}{d_0 + d_1 e^{-j\omega} + \dots + d_N e^{-j\omega N}}$$

DTFT computation

```
num=[2 1];
den=[1 -0.6];
w=-4*pi:8*pi/511:4*pi;
h=freqz(num,den,w);
```

```
subplot(2,2,1)
plot(w/pi,real(h));grid
title('Real part of H(e^{i\omega})')
xlabel('\omega /\pi')
ylabel('Amplitude')
subplot(2,2,2)
plot(w/pi,imag(h));grid
title('Imaginary part of H(e^{j\omega})')
xlabel('\omega /\pi')
ylabel('Amplitude')
subplot(2,2,3)
plot(w/pi,abs(h));grid
title('Magnitude spectrum of H(e^{j\omega})')
xlabel('\omega /\pi')
ylabel('Amplitude')
subplot(2,2,4)
plot(w/pi,angle(h));grid
title('Phase spectrum of H(e^{i\omega})')
xlabel('\omega /\pi')
ylabel('Phase, radians')
```

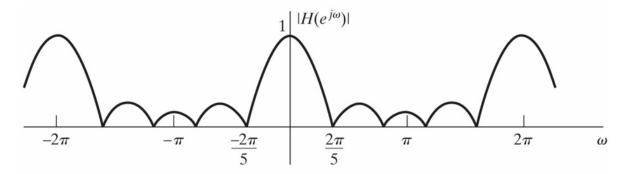


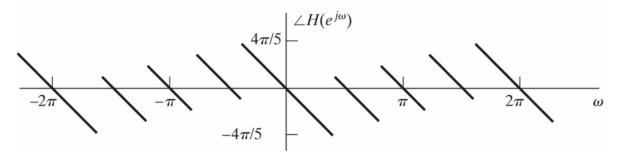
Homework

- Problems in textbook: 2.36, 2.37, 2.43, 2.45, 2.58
- MATLAB problems
 - → Submit by 10/2 (Tuesday) before the class
 - Make a document containing releveant figures and answers for questions
 - No hard copy required.
 - Send a zip file containing all m-files, plots, and the document.

MATLAB problem I

- lacktriangle Plot the graphs in Example 2.16 using equation (2.123) with $M_2=4$
- Use 'freqz' to plot the same graph





MATLAB problem 2

Time-shift property of DTFT is

$$x[n] \stackrel{\mathcal{F}}{\longleftrightarrow} X(e^{j\omega}) \longrightarrow x[n-n_d] \stackrel{\mathcal{F}}{\longleftrightarrow} e^{-j\omega n_d} X(e^{j\omega})$$

Using 'freqz' function, write a MATLAB program to check time-shift property

$$\star x[n] = \left(\frac{1}{2}\right)^n \left(u[n] - u[n-10]\right) \text{ with } n_d = 5$$

- + Plot magnitudes and phases of original and delayed sequences
- → Use 'unwrap' function to remove sudden jumps in phases
- → Interpret the phase plots to show time-shift property holds

MATLAB problem 3

Convolution property of DTFT is

$$x[n] * y[n] \stackrel{\mathcal{F}}{\longleftrightarrow} X(e^{j\omega})Y(e^{j\omega})$$

- Using 'freqz' function, write a MATLAB program to check convolution property
 - $x[n] = \left(\frac{1}{2}\right)^n (u[n] u[n-10]), y[n] = \left(3\right)^n (u[n] u[n-7])$
 - ullet You should compare the Fourier transforms of x[n]*y[n] and $X(e^{j\omega})Y(e^{j\omega})$
 - → Plot both magnitudes and phases

MATLAB problem 4 (require 6 plots total)

Consider the radar example

$$y[n] = \Gamma s[n-D] + w[n] = s[n] * \Gamma \delta[n-D] + w[n]$$

Define variables

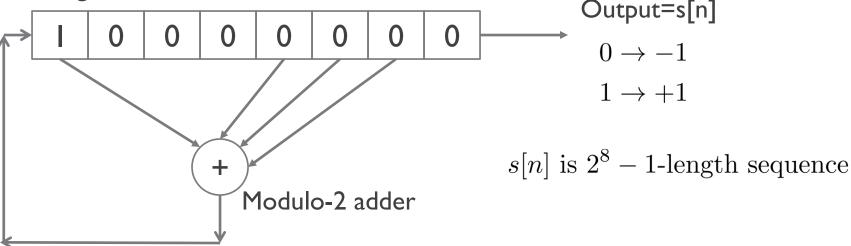
$$s[n]=\{1,1,1,1,1,-1,-1,1,1,-1,1,-1,1\},\ \Gamma=0.9,\ D=20$$

$$w[n]: \text{ Gaussian random sequence with zero mean and variance }\sigma^2=0.01$$

- Write a program to plot y[n] for $0 \le n \le 199$
- lacktriangle Compute and plot the cross-correlation $c_{ys}[\ell]$ for $0 \le \ell \le 59$
 - → Can we estimate D with this cross-correlation?
- Repeat all parts with $\sigma^2 = 0.1$ and $\sigma^2 = 1$
 - \bullet What is the role of σ^2 in finding D? Is it helpful or not?

MATLAB problem 5 (require 6 plots total)

 Repeat "MATLAB problem 4" with s[n] obtained from the linear shift register



- When plotting y[n], set $0 \le n \le 500$. For $c_{ys}[\ell]$, set $0 \le \ell \le 99$
- Is having a longer sequence s[n] beneficial to detect the target in radar?

