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Course at glance
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Discrete-time signals

Fourier-domain 
representation

Sampling and 
reconstruction

z-transform DFT/FFT

Discrete-time systems

Discrete-time 
signals and systems

Structure

Analysis

Filter design



Discrete-Time Processing of 
Continuous-Time Signals
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 Overall system is continuous-time processing
 Continuous-time processing of discrete-time signals also possible
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Overall block diagram



Output signal

 Necessary conditions
 The discrete-time system is LTI
 Continuous-time signal          is bandlimited
 Sampling rate       is at or above the Nyquist rate

 If all conditions are satisfied, the output signal becomes 

where 
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Cutoff frequency of 
ideal lowpass filter



Impulse invariance

 Want to implement the continuous-time impulse response          using 
discrete-time system        or vise versa

 How to design         based on         ?
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Impulse invariance

 Recall

 We want to have 

 In time-domain:
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Changing Sampling Rate Using 
Discrete-Time Processing
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Resampling

 Sampling with sampling period T:

 Often necessary to change the sampling rate of a discrete-time signal

 Resizing digital images 
 Video/audio conversion

 Direct approach is to reconstruct          from         and resample with 
sampling period
 Not a practical approach due to non-ideal hardware
 Near-ideal filters are $$$$$$$

 Can we change the sampling rate by only dealing with discrete-time 
operations? YES!
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Downsampling
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Decreasing sampling rate by integer factor

 Usually called “downsampling”
 Sampling rate can be reduced by “sampling” the original sampled sequence

 Original sampled sequence
 New “sampled” sequence
 Keep one sample out of every M samples

 Operation called “compressor”
 The new sequence           is identical to the sequence obtained from 

with the sampling period 
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Is reconstruction possible?

 Original sampling rate

 If                                         ,           can be reconstructed from           if

 Sampling rate can be reduced to           without aliasing if the original 
sampling rate T is at least M times the Nyquist rate 
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Frequency-domain representation

 DTFT of                         is

 DTFT of  
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Frequency-domain representation

 We can write                      for  

 Using DTFT of x[n]

 We have

14Scaled-copies of 



Example – no aliasing
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Original sequence

Desired sequence



Example – with aliasing
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Aliasing occurs! To avoid aliasing, 

Prefiltering to avoid aliasing

Original sequence



A general downsampling system

 Lowpass filter to avoid aliasing
 The system also called “decimator” (in general, “downsampling”)
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Efficient implementation of downsampling


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Block diagram representation
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Upsampling
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Increasing sampling rate by integer factor

 Usually called “upsampling”
 Downsampling analogous to sampling a CT signal
 Upsampling analogous to D/C conversion

 Want to increase the sampling rate of x[n] by a factor of L

 Obtain

from 
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Upsampling procedure

 It is obvious that
 The output from the expander is

 The lowpass filter plays a role similar to the ideal D/C converter
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Expander

How does           look like?



Frequency-domain representation

 The Fourier transform of          is
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Frequency-scaled version of x[n]



Frequency-domain representation
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Original sequence Desired sequence

Expanded sequence
- Lowpass filter removes L replicas
- Need to have a gain of L



Upsampling = interpolation

 If the input sequence                         was obtained without aliasing
The upsampled sequence          can perfectly recover

 even has more samples than         in time domain  
 Filling in the missing samples = interpolation!
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Practical linear interpolation

 Ideal lowpass filter is not possible in practice
 Very good approximations are possible though

 Very simple linear interpolation also works
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Efficient implementation of upsampling

 Recall

 Assume L=2 for simply illustration
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Efficient implementation of upsampling

 Consider            and                  separately

28



Efficient implementation of upsampling

 Overall system

 “Commutator” operates at twice original sampling rate
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No zero insertion!



Efficient implementation of upsampling

 Generalization

 “Commutator” operates at 
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…



Closer look into the system

 Recall
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All-pass filter



Frequency-domain representation

 Recall

 First consider



 Next

 Then

 Substitute  
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Frequency-domain representation

 Recall

 If 
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Same as downsampling example
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Original sequence

Desired sequence



Frequency-domain representation

 Recall

 All Fourier transform must have period of 
 Other values of k just serve to make               be periodic with period

 Thus, with the ideal lowpass filter 
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Only when k=0 contributes in 



Time-domain illustration

 Note

 Thus                            translates into a time-shift of          in the time domain
A fraction of a sample time-shift
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…

…

…



Efficient implementation of upsampling - revisit
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Why polyphase filter?

 For
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Definition of polyphaser decomposition

 The polyphaser decomposition of a sequence is obtained by representing 
it as a superposition of M subsequences, each consisting of every Mth
value of successively delayed versions of the sequence.
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Changing sampling rate by a noninteger factor

 Combine interpolator and decimator 
 The order of two systems is important!

 Change sampling rate by a rational factor L/M
= Change sampling period by a rational factor M/L
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