

Digital Signal Processing

POSTECH

Department of Electrical Engineering Junil Choi

Auto/cross-correlations of Deterministic Signals

Properties of autocorrelation sequences

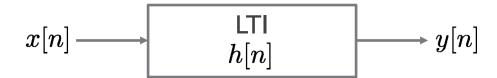
◆ Three main properties of autocorrelation sequence

$$c_{xx}[\ell] = x[\ell] * x^*[-\ell]$$

$$+ |c_{xx}[\ell]| \le c_{xx}[0] = \sum_{n=-\infty}^{\infty} x^2[n] = \text{energy}$$

$$+\sum_{\ell=-\infty}^{\infty} c_{xx}[\ell]e^{-j\omega\ell} \ge 0, \text{ for all } \omega$$

Input/output relationships for LTI system



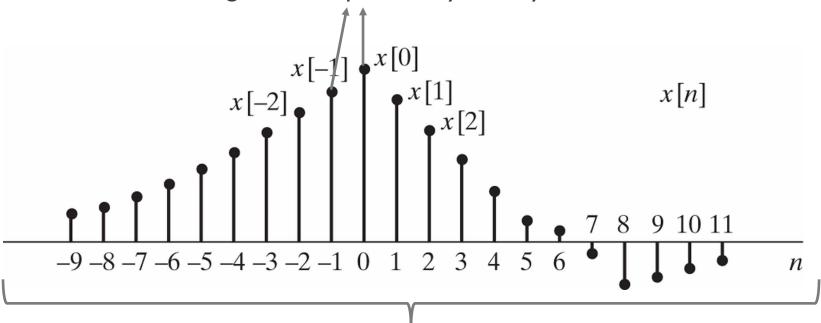
$$c_{yx}[\ell] = c_{xx}[\ell] * h[\ell]$$

 $lacktriangledown c_{yx}[\ell] = c_{xx}[\ell] * h[\ell]$ $lacktriangledown c_{yy}[\ell] = c_{xx}[\ell] * c_{hh}[\ell]$ Try to prove these

Discrete-Time Random Signals

Discrete-time random signals

Each sample is a random variable following a certain probability density function



Collection of random variables is referred to as a random process

Wide-sense stationary (WSS) random signals

◆ The mean of random process x[n] at time n is

$$m_x[n] = \mathcal{E}\{x[n]\}$$

lack The autocorrelation of x[n] is

$$\phi_{xx}[n, n+m] = \mathcal{E}\left\{x[n]x[n+m]\right\}$$

◆ If x[n] is wide-sense stationary random process, then

$$m_x[n] = m_x$$
, for all n

$$\phi_{xx}[n, n+m] = \phi_{xx}[m], \text{ for all } n \text{ and } m$$

Constant!

Input-output relation of LTI systems

- Recall a LTI system $y[n] = \sum_{k=-\infty}^{\infty} h[k]x[n-k]$
- With WSS input, the mean of output becomes

$$m_y[n] = \mathcal{E}\{y[n]\} = \sum_{k=-\infty}^{\infty} h[k]\mathcal{E}\{x[n-k]\} = m_x \sum_{k=-\infty}^{\infty} h[k]$$

→ Alternative expression

$$m_y = H(e^{j0})m_x$$

Input-output relation of LTI systems

Autocorrelation of output is

$$\phi_{yy}[n,n+m] = \mathcal{E}\{y[n]y[n+m]\}$$

$$= \mathcal{E}\left\{\sum_{k=-\infty}^{\infty}\sum_{r=-\infty}^{\infty}h[k]h[r]x[n-k]x[n+m-r]\right\}$$

$$= \sum_{k=-\infty}^{\infty}h[k]\sum_{r=-\infty}^{\infty}h[r]\mathcal{E}\left\{x[n-k]x[n+m-r]\right\}$$

$$= \sum_{k=-\infty}^{\infty}h[k]\sum_{r=-\infty}^{\infty}h[r]\phi_{xx}[m+k-r]$$

$$= \phi_{yy}[m]$$
Not a function of $n!$

Fourier transform of autocorrelations

• Let
$$\phi_{xx}[n] \stackrel{\mathcal{F}}{\longleftrightarrow} \Phi_{xx}(e^{j\omega}), \ \phi_{yy}[n] \stackrel{\mathcal{F}}{\longleftrightarrow} \Phi_{yy}(e^{j\omega}), \ c_{hh}[n] \stackrel{\mathcal{F}}{\longleftrightarrow} C_{hh}(e^{j\omega})$$

$$lacktriangle$$
 Because $\phi_{yy}[m] = \sum_{\ell=-\infty}^{\infty} \phi_{xx}[m-\ell]c_{hh}[\ell]$

$$c_{hh}[\ell] = h[n] * h[-n] \stackrel{\mathcal{F}}{\longleftrightarrow} H(e^{j\omega})H^*(e^{j\omega}) = |H(e^{j\omega})|^2$$

we have
$$\Phi_{yy}(e^{j\omega})=C_{hh}(e^{j\omega})\Phi_{xx}(e^{j\omega})$$

$$=|H(e^{j\omega})|^2\Phi_{xx}(e^{j\omega})$$

Power density spectrum or power spectrum density

$$\mathcal{E}\{y^2[n]\} = \phi_{yy}[0] = \frac{1}{2\pi} \int_{-\pi}^{\pi} \Phi_{yy}(e^{j\omega}) d\omega$$

MATLAB Programming

DTFT computation - preliminary

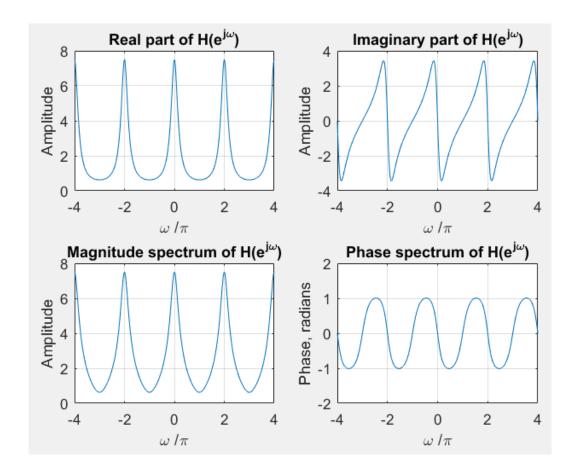
- Use 'freqz' function (different from fft function)
- Only can evaluate DTFT that is expressed as

$$X(e^{j\omega}) = \frac{p_0 + p_1 e^{-j\omega} + \dots + p_M e^{-j\omega M}}{d_0 + d_1 e^{-j\omega} + \dots + d_N e^{-j\omega N}}$$

DTFT computation

```
num=[2 1];
den=[1 -0.6];
w=-4*pi:8*pi/511:4*pi;
h=freqz(num,den,w);
```

```
subplot(2,2,1)
plot(w/pi,real(h));grid
title('Real part of H(e^{i\omega})')
xlabel('\omega /\pi')
ylabel('Amplitude')
subplot(2,2,2)
plot(w/pi,imag(h));grid
title('Imaginary part of H(e^{j\omega})')
xlabel('\omega /\pi')
ylabel('Amplitude')
subplot(2,2,3)
plot(w/pi,abs(h));grid
title('Magnitude spectrum of H(e^{j\omega})')
xlabel('\omega /\pi')
ylabel('Amplitude')
subplot(2,2,4)
plot(w/pi,angle(h));grid
title('Phase spectrum of H(e^{i\omega})')
xlabel('\omega /\pi')
ylabel('Phase, radians')
```

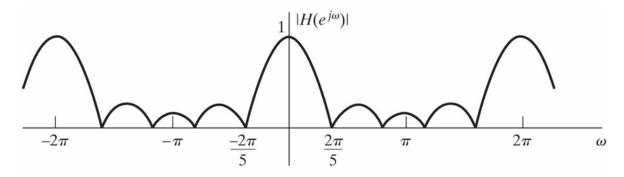


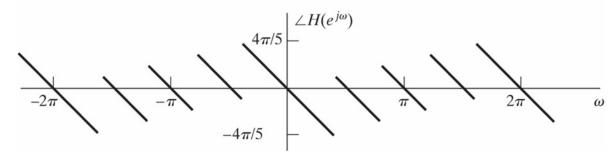
Announcements

- Homework
 - → Problems in textbook: 2.36, 2.37, 2.43, 2.45, 2.58
 - → MATLAB problems
 - Submit by 10/4 (Thursday) before the class
 - Make a document containing relevant figures and answers for questions
 - » No hard copy required.
 - Send a zip file containing all m-files, plots, and the document.
 - Please refer to the instructions in the first MATLAB homework
 - » Annotate only some key lines from now on
- First quiz on 10/2 (Tuesday)
 - → Will have this quiz in the beginning of class (so, don't be late!)
 - → Coverage will be the first and second textbook homework problems
 - → Around 3~4 questions for 20 minutes
 - → Will talk about your possible future careers after the quiz in Korean

MATLAB problem I

- lacktriangle Plot the graphs in Example 2.16 using equation (2.123) with $M_2=4$
- Use 'freqz' to plot the same graph





MATLAB problem 2

Time-shift property of DTFT is

$$x[n] \stackrel{\mathcal{F}}{\longleftrightarrow} X(e^{j\omega}) \longrightarrow x[n-n_d] \stackrel{\mathcal{F}}{\longleftrightarrow} e^{-j\omega n_d} X(e^{j\omega})$$

Using 'freqz' function, write a MATLAB program to check time-shift property

$$\star x[n] = \left(\frac{1}{2}\right)^n \left(u[n] - u[n-10]\right)$$
 with $n_d = 5$

- + Plot magnitudes and phases of original and delayed sequences
- → Use 'unwrap' function to remove sudden jumps in phases
- → Interpret the phase plots to show time-shift property holds

MATLAB problem 3

Convolution property of DTFT is

$$x[n] * y[n] \stackrel{\mathcal{F}}{\longleftrightarrow} X(e^{j\omega})Y(e^{j\omega})$$

- Using 'freqz' function, write a MATLAB program to check convolution property
 - Use $x[n] = \left(\frac{1}{2}\right)^n (u[n] u[n-10]), y[n] = \left(3\right)^n (u[n] u[n-7])$
 - ullet You should compare the Fourier transforms of x[n]*y[n] and $X(e^{j\omega})Y(e^{j\omega})$
 - → Plot both magnitudes and phases

MATLAB problem 4 (require 6 plots total)

Consider the radar example

$$y[n] = \Gamma s[n-D] + w[n] = s[n] * \Gamma \delta[n-D] + w[n]$$

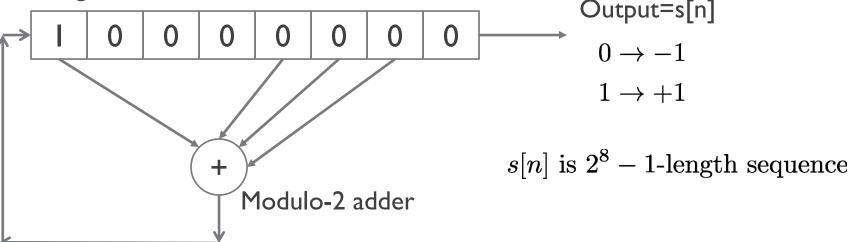
Define variables

$$s[n] = \{1,1,1,1,1,-1,-1,1,1,-1,1,-1,1\}, \ \Gamma = 0.9, \ D = 20$$
 $w[n]:$ Gaussian random sequence with zero mean and variance $\sigma^2 = 0.01$

- Write a program to plot y[n] for $0 \le n \le 199$
- lacktriangle Compute and plot the cross-correlation $c_{ys}[\ell]$ for $0 \le \ell \le 59$
 - → Can we estimate D with this cross-correlation?
- Repeat all parts with $\sigma^2 = 0.1$ and $\sigma^2 = 1$
 - igspace What is the role of σ^2 in finding D? Is it helpful or not?

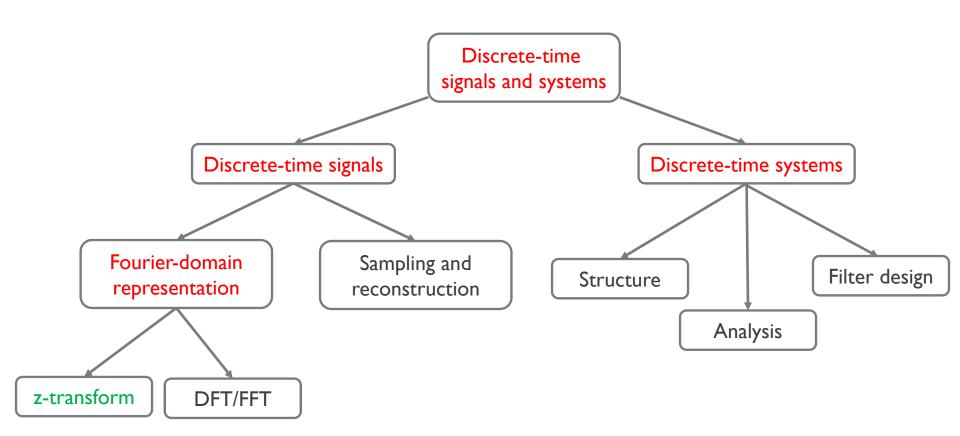
MATLAB problem 5 (require 6 plots total)

 Repeat "MATLAB problem 4" with s[n] obtained from the linear shift register



- lacktriangle When plotting y[n], set $0 \le n \le 500$. For $c_{ys}[\ell]$, set $0 \le \ell \le 99$
- Is having a longer sequence s[n] beneficial to detect the target in radar?

Course at glance



The z-Transform

Preliminaries

- Transforms
 - → Fourier transform
 - → Laplace transform
 - → Discrete-time Fourier transform (DTFT)
 - → z-transform
- z-transform is a generalization of DTFT

- Continuous time

Discrete time

Limitation of Fourier transform

Discrete-time Fourier transform

$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$$

$$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) e^{j\omega n} d\omega$$

Sufficient condition for the existence of DTFT

$$|X(e^{j\omega})| = \left|\sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}\right| \le \sum_{n=-\infty}^{\infty} |x[n]||e^{-j\omega n}| \le \sum_{n=-\infty}^{\infty} |x[n]| < \infty$$

DTFT may not exist for sequences that are not absolutely summable

z-transform definition

Discrete-time Fourier transform

$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$$

z-transform (can interpret as a function of z)

$$X(z) = \sum_{n = -\infty} x[n] z^{-n} \longrightarrow x[n] \stackrel{\mathcal{Z}}{\longleftrightarrow} X(z)$$

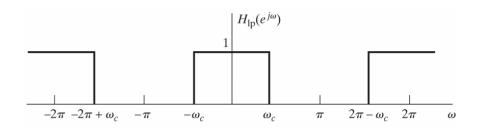
• The complex variable z in polar form $z = re^{j\omega}$

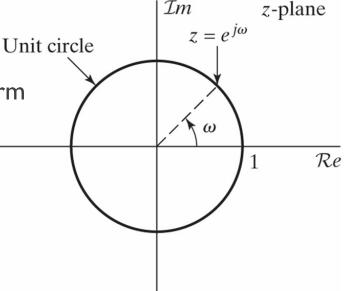
$$X(z) = X(re^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n](re^{j\omega})^{-n} = \sum_{n=-\infty}^{\infty} (x[n]r^{-n})e^{-j\omega n}$$

• If |z|=r=1, $X(z)=X(e^{j\omega})$

z-plane

- z-transform is a function of complex variable z
 - Interpret using the complex z-plan
- z-transform on unit circle = Fourier transform
- ◆ Linear frequency axis (x-axis) in Fourier transform
 - Unit circle in z-transform with period 2π





Region of convergence (ROC)

DTFT does not converge for all sequences (depends on x[n])

$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$$

z-transform does not converge for all sequences OR for all values of z

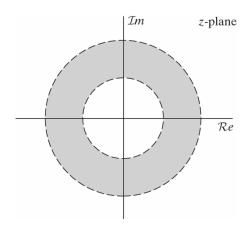
$$X(z) = X(re^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n](re^{j\omega})^{-n} = \sum_{n=-\infty}^{\infty} (x[n]r^{-n})e^{-j\omega n}$$

igle ROC: for any given sequence x[n], the set of values of z for which z-transform converges $_{\infty}$

$$|X(re^{j\omega})| \le \sum_{n=-\infty}^{\infty} |x[n]r^{-n}| \le \sum_{n=-\infty}^{\infty} |x[n]||z|^{-n} < \infty$$

Shape of ROC

- lacktriangle Convergence depends only on |z|
 - igspace If a point $z=z_1$ is part of ROC, then the circle with $|z|=|z_1|$ is part of ROC
- ROC consists of a ring centered at the origin
 - → Outer boundary is a circle (may extend to infinity)
 - → Inner boundary is a circle (may extend inward to include the origin)
- If ROC includes the unit circle |z|=1
 - DTFT exists!

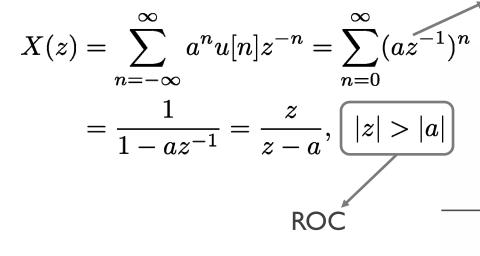


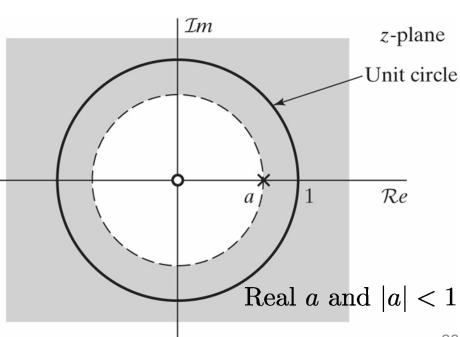
ROC example

- Consider sequence $x[n] = a^n u[n]$
- z-transform of x[n]

$$|az^{-1}| < 1$$
 to converge

Right-sided sequence





Zeros and poles

♦ Most important and useful z-transform expression — rational function of z

$$X(z) = \frac{P(z)}{Q(z)}$$

→ In previous example,

$$X(z) = \frac{z}{z - a}$$

- lacktriangle Zeros of X(z): the values of z for X(z)=0
 - Roots of polynomial P(z)
- lacktriangle Poles of X(z): the values of z for $X(z)=\infty$
 - Roots of polynomial Q(z)

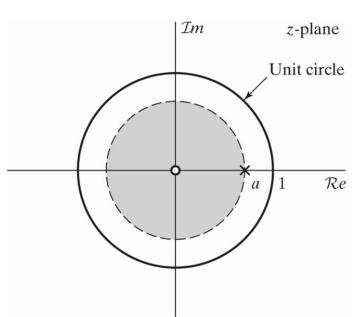
ROC example I

◆ Left-sided exponential sequence

$$x[n] = -a^n u[-n-1] = \begin{cases} -a^n & n \le -1\\ 0 & n > -1 \end{cases}$$

$$X(z) = -\sum_{n=-\infty}^{-1} a^n z^{-n} = -\sum_{n=1}^{\infty} a^{-n} z^n$$

$$= 1 - \sum_{n=0}^{\infty} (a^{-1} z)^n = 1 - \frac{1}{1 - a^{-1} z} = \frac{z}{z - a}$$
 with ROC $|z| < |a|$



ROC example 2

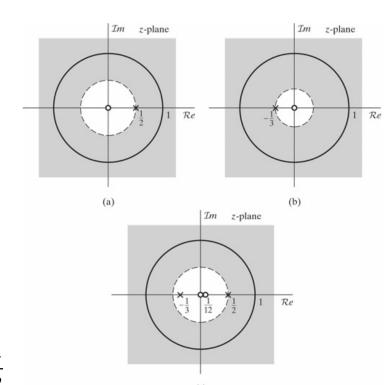
Sum of two exponential sequence

$$x[n] = \left(\frac{1}{2}\right)^n u[n] + \left(-\frac{1}{3}\right)^n u[n]$$

$$\mathsf{ROC}: |z| > \frac{1}{2} \qquad \mathsf{ROC}: |z| > \frac{1}{3}$$
Use linearity of z-transform
$$X(z) = \dots = \frac{1}{1 - \frac{1}{2}z^{-1}} + \frac{1}{1 + \frac{1}{3}z^{-1}}$$

$$= \frac{2z\left(z - \frac{1}{12}\right)}{\left(z - \frac{1}{2}\right)\left(z + \frac{1}{3}\right)}$$

$$\mathsf{ROC}: |z| > \frac{1}{2} \text{ and } |z| > \frac{1}{3}$$

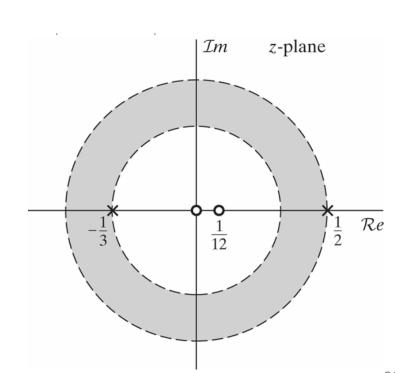


ROC example 3

lacktriangle Two-sided exponential sequence $x[n] = \left(-\frac{1}{3}\right)^n u[n] - \left(\frac{1}{2}\right)^n u[-n-1]$

$$\left(-\frac{1}{3}\right)^n u[n] \stackrel{\mathcal{Z}}{\longleftrightarrow} \frac{1}{1 + \frac{1}{3}z^{-1}}, \quad |z| > \frac{1}{3}$$
$$-\left(\frac{1}{2}\right)^n u[-n-1] \stackrel{\mathcal{Z}}{\longleftrightarrow} \frac{1}{1 - \frac{1}{2}z^{-1}}, \quad |z| < \frac{1}{2}$$

$$X(z) = \frac{1}{1 + \frac{1}{3}z^{-1}} + \frac{1}{1 - \frac{1}{2}z^{-1}}, \quad \frac{1}{3} < |z| < \frac{1}{2}$$
$$= \frac{2z\left(z - \frac{1}{12}\right)}{\left(z + \frac{1}{2}\right)\left(z - \frac{1}{2}\right)}$$



Finite-length sequence example I

- Recall z-transform $X(z) = \sum_{n=N_1}^{N_2} x[n]z^{-n}$
- lacktriangle No problem of convergence as long as $|x[n]z^{-n}|$ is finite
- May not have closed form expressions, may be unnecessary

$$x[n] = \delta[n] + \delta[n-5] \stackrel{\mathcal{Z}}{\longleftrightarrow} X(z) = 1 + z^{-5}$$

which is finite as long as $z \neq 0$

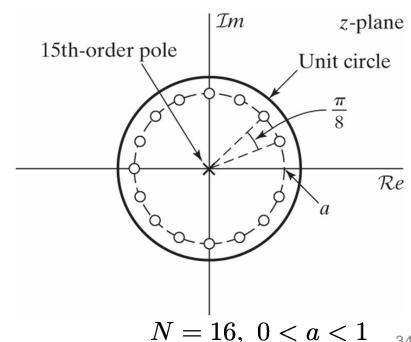
Finite-length sequence example 2

- Consider the sequence $x[n] = \begin{cases} a^n, & 0 \le n \le N-1 \\ 0, & \text{otherwise} \end{cases}$

$$lack z$$
-transform becomes $a<\infty$ and $z
eq 0$ $X(z) = \sum_{n=0}^{N-1} a^n z^{-n} = \sum_{n=0}^{N-1} (az^{-1})^n$

$$= \frac{1 - (az^{-1})^N}{1 - az^{-1}} = \frac{1}{z^{N-1}} \frac{z^N - a^N}{z - a}$$

 N roots of numerator polynomial $z_k = ae^{j2\pi k/N}, \quad k = 0, 1, \dots, N-1$ Pole-zero cancellation with k=0



Common z-transform pairs

TABLE 3.1 SOME COMMON z-TRANSFORM PAIRS

Sequence	Transform	ROC
1. δ[n]	1	All z
2. u[n]	$\frac{1}{1-z^{-1}}$	z > 1
3. $-u[-n-1]$	$\frac{1}{1-z^{-1}}$	z < 1
4. $\delta[n-m]$	z^{-m}	All z except 0 (if $m > 0$) or ∞ (if $m < 0$)
5. $a^n u[n]$	$\frac{1}{1-az^{-1}}$	z > a
6. $-a^n u[-n-1]$	$\frac{1}{1-az^{-1}}$	z < a
7. $na^nu[n]$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z > a
$8na^nu[-n-1]$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z < a
9. $\cos(\omega_0 n)u[n]$	$\frac{1 - \cos(\omega_0)z^{-1}}{1 - 2\cos(\omega_0)z^{-1} + z^{-2}}$	z > 1
10. $\sin(\omega_0 n)u[n]$	$\frac{\sin(\omega_0)z^{-1}}{1 - 2\cos(\omega_0)z^{-1} + z^{-2}}$	z > 1
11. $r^n \cos(\omega_0 n) u[n]$	$\frac{1 - r\cos(\omega_0)z^{-1}}{1 - 2r\cos(\omega_0)z^{-1} + r^2z^{-2}}$	z > r
12. $r^n \sin(\omega_0 n) u[n]$	$\frac{r\sin(\omega_0)z^{-1}}{1 - 2r\cos(\omega_0)z^{-1} + r^2z^{-2}}$	z > r
13. $\begin{cases} a^n, & 0 \le n \le N - 1, \\ 0, & \text{otherwise} \end{cases}$		z > 0

